Development of Toughened Blends of Poly(lactic acid) and Poly(butylene adipate-co-terephthalate) for 3D Printing Applications: Compatibilization Methods and Material Performance Evaluation

被引:90
|
作者
Andrzejewski, Jacek [1 ,3 ]
Cheng, Joyce [2 ]
Anstey, Andrew [1 ]
Mohanty, Amar K. [1 ,2 ]
Misra, Manjusri [1 ,2 ]
机构
[1] Univ Guelph, Bioprod Discovery & Dev Ctr, Dept Plant Agr, Guelph, ON N1G 2W1, Canada
[2] Univ Guelph, Sch Engn, Guelph, ON N1G 2W1, Canada
[3] Poznan Univ Tech, Fac Mech Engn, Polymer Proc Div, Poznan 61138, Poland
基金
加拿大自然科学与工程研究理事会;
关键词
PLA; PBAT; polymer blends; FDM printing; impact toughness; CHAIN BRANCHED POLY(L-LACTIDE)S; PLA/PBAT BLOWN FILMS; POLY LACTIC-ACID; MECHANICAL-PROPERTIES; REACTIVE EXTRUSION; PHASE MORPHOLOGY; IMPACT STRENGTH; BINARY BLENDS; PLA-PBAT; CRYSTALLIZATION;
D O I
10.1021/acssuschemeng.9b04925
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The research presented in this article discusses the subject of poly(lactic acid) (PLA) modification via reactive mixing with the poly(butylene adipate-co-terephthalate) (PBAT) copolymer for 3D printing applications. Filaments suitable for fused deposition modeling were prepared from blends of PLA containing 10, 20, and 30% by weight of PBAT. Mechanical testing clearly indicated that the blending with PBAT effectively increases the impact strength of PLA, from an initial value of approximately 30 J/m to more than 700 J/m for the optimized PLA/PBAT (30%) chain extender-modified blend. The addition of the multifunctional chain extender (ESA) also has a positive effect on the rheological profile of the PLA/PBAT materials, which facilitates both the production process of the extruded filament and the maintenance of a stable width of the printed material path. Despite the use of a significant PBAT content, the analysis of thermomechanical properties did not show any significant deterioration in the thermal resistance of the materials, while a detailed differential scanning calorimetry analysis indicates a small tendency to nucleate the PLA structure by PBAT inclusions. The structural analysis of scanning electron microscopy clearly indicates a change in the mechanism of deformation from a brittle fracture for pure PLA to a more favorable shear yielding for PBAT-rich blends. The comparison of the properties of printed and injected PLA/PBAT blends indicates the possibility of obtaining similar or in some respects better mechanical properties, especially for ESA-modified samples.
引用
收藏
页码:6576 / 6589
页数:14
相关论文
共 50 条
  • [21] Synergistic reinforcing of poly(lactic acid) by poly(butylene adipate-co-terephthalate) and alumina nanoparticles
    Chen, Jie
    Hu, Rong-Rong
    Jin, Fan-Long
    Park, Soo-Jin
    JOURNAL OF APPLIED POLYMER SCIENCE, 2021, 138 (16)
  • [22] Development of Toughened Flax Fiber Reinforced Composites. Modification of Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blends by Reactive Extrusion Process
    Andrzejewski, Jacek
    Nowakowski, Michal
    MATERIALS, 2021, 14 (06)
  • [23] Properties of Poly (lactic acid) (PLA)/Poly (butylene adipate-co-terephthalate) (PBAT) Blends in the Presence of Antioxidant
    Pukpanta, P.
    Sirisinha, K.
    BIOMATERIALS AND APPLICATIONS, 2012, 506 : 126 - 129
  • [24] Biodegradable Poly(butylene succinate) and Poly(butylene adipate-co-terephthalate) Blends: Reactive Extrusion and Performance Evaluation
    Muthuraj, Rajendran
    Misra, Manjusri
    Mohanty, Amar Kumar
    JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2014, 22 (03) : 336 - 349
  • [25] Effect of the Joncryl® ADR Compatibilizing Agent in Blends of Poly(butylene adipate-co-terephthalate)/Poly(lactic acid)
    Nunes, Edilene de C. D.
    de Souza, Alana G.
    Rosa, Derval dos S.
    MACROMOLECULAR SYMPOSIA, 2019, 383 (01)
  • [26] The carbon nanotubes effects on the morphology and properties of poly(lactic) acid/poly(butylene adipate-co-terephthalate) blends
    Xiao, Zhihua
    Li, Guili
    Liu, Chunxiao
    Li, Haimei
    Lin, Jun
    POLYMER COMPOSITES, 2022, 43 (12) : 8725 - 8736
  • [27] Phase Structure Analysis and Composition Optimization of Poly(Lactic Acid)/Poly(Butylene Adipate-co-terephthalate) Blends
    Li, Guozhong
    Xia, Ying
    Mu, Guangqing
    Yang, Qian
    Zhou, Huimin
    Lin, Xiaojian
    Gao, Yuanmei
    Qian, Fang
    JOURNAL OF MACROMOLECULAR SCIENCE PART B-PHYSICS, 2022, 61 (03): : 413 - 424
  • [28] Morphology, Thermal and Mechanical Properties of Poly(lactic acid)/Poly(butylene adipate-co-terephthalate)/CMPS Blends
    Kang, Kyoung Soo
    Kim, Bong Shik
    Jang, Woo Yeul
    Shin, Boo Young
    POLYMER-KOREA, 2009, 33 (02) : 164 - 168
  • [29] Crystallization Behavior of Fully Biodegradable Poly(Lactic Acid)/Poly(Butylene Adipate-co-Terephthalate) Blends
    Xiao, Hanwen
    Lu, Wei
    Yeh, Jen-Taut
    JOURNAL OF APPLIED POLYMER SCIENCE, 2009, 112 (06) : 3754 - 3763
  • [30] Water-Disintegrative and Biodegradable Blends Containing Poly(L-lactic acid) and Poly(butylene adipate-co-terephthalate)
    Oyama, Hideko T.
    Tanaka, Yoshikazu
    Hirai, Sakiko
    Shida, Shigenari
    Kadosaka, Ayako
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2011, 49 (05) : 342 - 354