Development of Toughened Blends of Poly(lactic acid) and Poly(butylene adipate-co-terephthalate) for 3D Printing Applications: Compatibilization Methods and Material Performance Evaluation

被引:90
|
作者
Andrzejewski, Jacek [1 ,3 ]
Cheng, Joyce [2 ]
Anstey, Andrew [1 ]
Mohanty, Amar K. [1 ,2 ]
Misra, Manjusri [1 ,2 ]
机构
[1] Univ Guelph, Bioprod Discovery & Dev Ctr, Dept Plant Agr, Guelph, ON N1G 2W1, Canada
[2] Univ Guelph, Sch Engn, Guelph, ON N1G 2W1, Canada
[3] Poznan Univ Tech, Fac Mech Engn, Polymer Proc Div, Poznan 61138, Poland
基金
加拿大自然科学与工程研究理事会;
关键词
PLA; PBAT; polymer blends; FDM printing; impact toughness; CHAIN BRANCHED POLY(L-LACTIDE)S; PLA/PBAT BLOWN FILMS; POLY LACTIC-ACID; MECHANICAL-PROPERTIES; REACTIVE EXTRUSION; PHASE MORPHOLOGY; IMPACT STRENGTH; BINARY BLENDS; PLA-PBAT; CRYSTALLIZATION;
D O I
10.1021/acssuschemeng.9b04925
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The research presented in this article discusses the subject of poly(lactic acid) (PLA) modification via reactive mixing with the poly(butylene adipate-co-terephthalate) (PBAT) copolymer for 3D printing applications. Filaments suitable for fused deposition modeling were prepared from blends of PLA containing 10, 20, and 30% by weight of PBAT. Mechanical testing clearly indicated that the blending with PBAT effectively increases the impact strength of PLA, from an initial value of approximately 30 J/m to more than 700 J/m for the optimized PLA/PBAT (30%) chain extender-modified blend. The addition of the multifunctional chain extender (ESA) also has a positive effect on the rheological profile of the PLA/PBAT materials, which facilitates both the production process of the extruded filament and the maintenance of a stable width of the printed material path. Despite the use of a significant PBAT content, the analysis of thermomechanical properties did not show any significant deterioration in the thermal resistance of the materials, while a detailed differential scanning calorimetry analysis indicates a small tendency to nucleate the PLA structure by PBAT inclusions. The structural analysis of scanning electron microscopy clearly indicates a change in the mechanism of deformation from a brittle fracture for pure PLA to a more favorable shear yielding for PBAT-rich blends. The comparison of the properties of printed and injected PLA/PBAT blends indicates the possibility of obtaining similar or in some respects better mechanical properties, especially for ESA-modified samples.
引用
收藏
页码:6576 / 6589
页数:14
相关论文
共 50 条
  • [1] Development of poly (butylene adipate-co-terephthalate) PBAT toughened poly (lactic acid) blends 3D printing filament
    Mathew, Juviya
    Das, Jyoti Prakash
    Tp, Manoj
    Kumar, Sudheer
    JOURNAL OF POLYMER RESEARCH, 2022, 29 (11)
  • [2] Development of poly (butylene adipate-co-terephthalate) PBAT toughened poly (lactic acid) blends 3D printing filament
    Juviya Mathew
    Jyoti Prakash Das
    Manoj TP
    Sudheer Kumar
    Journal of Polymer Research, 2022, 29
  • [3] A Review on the Transformative Effects of Extrusion Parameters on Poly(Butylene adipate-co-terephthalate)/Poly(Lactic acid) Blends in 3D Printing
    de Melo, Eduarda Chiabai Rodrigues
    Lona, Liliane Maria Ferrareso
    Vieira, Ronierik Pioli
    JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2025, 33 (02) : 631 - 659
  • [4] Binary Green Blends of Poly(lactic acid) with Poly(butylene adipate-co-butylene terephthalate) and Poly(butylene succinate-co-butylene adipate) and Their Nanocomposites
    Coiai, Serena
    Di Lorenzo, Maria Laura
    Cinelli, Patrizia
    Righetti, Maria Cristina
    Passaglia, Elisa
    POLYMERS, 2021, 13 (15)
  • [5] Morphology, miscibility and continuity development in poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends
    Dil, Ebrahim Jalali
    Carreau, P. J.
    Favis, Basil D.
    POLYMER, 2015, 68 : 202 - 212
  • [6] Effects of filament extrusion temperature and 3D printing parameters on the structure and mechanical properties of poly(butylene adipate-co-terephthalate)/poly (lactic acid) blends
    de Melo, Eduarda Chiabai Rodrigues
    Lona, Liliane Maria Ferrareso
    Vieira, Ronierik Pioli
    POLYMER ENGINEERING AND SCIENCE, 2025, 65 (03) : 1255 - 1267
  • [7] Properties of 3D Printable Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blends and Nano Talc Composites
    Prasong, Wattanachai
    Muanchan, Paritat
    Ishigami, Akira
    Thumsorn, Supaphorn
    Kurose, Takashi
    Ito, Hiroshi
    JOURNAL OF NANOMATERIALS, 2020, 2020
  • [8] Compatible and Crystallization Properties of Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blends
    Yeh, Jen-Taut
    Tsou, Chi-Hui
    Huang, Chi-Yuan
    Chen, Kan-Nan
    Wu, Chin-San
    Chai, Wan-Lan
    JOURNAL OF APPLIED POLYMER SCIENCE, 2010, 116 (02) : 680 - 687
  • [9] Study on the preferential distribution of acetyl tributyl citrate in poly (lactic) acid-poly(butylene adipate-co-terephthalate) blends
    Aliotta, Laura
    Canesi, Ilaria
    Lazzeri, Andrea
    POLYMER TESTING, 2021, 98
  • [10] Chemical modification of poly(lactic acid) and its use as matrix in poly(lactic acid) poly(butylene adipate-co-terephthalate) blends
    Rigolin, Talita Rocha
    Costa, Lidiane Cristina
    Chinelatto, Marcelo Aparecido
    Riveros Munoz, Pablo Andres
    Prado Bettini, Silvia Helena
    POLYMER TESTING, 2017, 63 : 542 - 549