Emulation of high-resolution land surface models using sparse Gaussian processes with application to JULES

被引:7
作者
Baker, Evan [1 ]
Harper, Anna B. [1 ]
Williamson, Daniel [1 ]
Challenor, Peter [1 ]
机构
[1] Univ Exeter, Dept Math Sci, Exeter EX4 4QF, Devon, England
基金
英国自然环境研究理事会; 英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
ENVIRONMENT SIMULATOR JULES; SENSITIVITY-ANALYSIS; CLIMATE MODEL; COMPUTER; OPTIMIZATION; UNCERTAINTY; CALIBRATION; QUANTIFICATION;
D O I
10.5194/gmd-15-1913-2022
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Land surface models are typically integrated into global climate projections, but as their spatial resolution increases the prospect of using them to aid in local policy decisions becomes more appealing. If these complex models are to be used to make local decisions, then a full quantification of uncertainty is necessary, but the computational cost of running just one full simulation at high resolution can hinder proper analysis. Statistical emulation is an increasingly common technique for developing fast approximate models in a way that maintains accuracy but also provides comprehensive uncertainty bounds for the approximation. In this work, we developed a statistical emulation framework for land surface models, enabling fast predictions at a high resolution. To do so, our emulation framework acknowledges, and makes use of, the multitude of contextual data that are often fed into land surface models (sometimes called forcing data, or driving data), such as air temperature or various soil properties. We use The Joint UK Land Environment Simulator (JULES) as a case study for this methodology, and perform initial sensitivity analysis and parameter tuning to showcase its capabilities. The JULES is perhaps one of the most complex land surface models and so our success here suggests incredible gains can be made for all types of land surface model.
引用
收藏
页码:1913 / 1929
页数:17
相关论文
共 64 条
[1]  
[Anonymous], Ver. 3.1
[2]  
Baker E., GROSS PRIMARY PRODUC, DOI [10.5285/789bea37-0450-4822-9857-3dc848feb937, 2021, DOI 10.5285/789BEA37-0450-4822-9857-3DC848FEB937,2021]
[3]   The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes [J].
Best, M. J. ;
Pryor, M. ;
Clark, D. B. ;
Rooney, G. G. ;
Essery, R. L. H. ;
Menard, C. B. ;
Edwards, J. M. ;
Hendry, M. A. ;
Porson, A. ;
Gedney, N. ;
Mercado, L. M. ;
Sitch, S. ;
Blyth, E. ;
Boucher, O. ;
Cox, P. M. ;
Grimmond, C. S. B. ;
Harding, R. J. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (03) :677-699
[4]   Practical Heteroscedastic Gaussian Process Modeling for Large Simulation Experiments [J].
Binois, Mickael ;
Gramacy, Robert B. ;
Ludkovski, Mike .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (04) :808-821
[5]   Trends in evapotranspiration and its drivers in Great Britain: 1961 to 2015 [J].
Blyth, Eleanor M. ;
Martinez-de la Torre, Alberto ;
Robinson, Emma L. .
PROGRESS IN PHYSICAL GEOGRAPHY-EARTH AND ENVIRONMENT, 2019, 43 (05) :666-693
[6]   High sensitivity of future global warming to land carbon cycle processes [J].
Booth, Ben B. B. ;
Jones, Chris D. ;
Collins, Mat ;
Totterdell, Ian J. ;
Cox, Peter M. ;
Sitch, Stephen ;
Huntingford, Chris ;
Betts, Richard A. ;
Harris, Glen R. ;
Lloyd, Jon .
ENVIRONMENTAL RESEARCH LETTERS, 2012, 7 (02)
[7]   Learning about physical parameters: the importance of model discrepancy [J].
Brynjarsdottir, Jenny ;
O'Hagan, Anthony .
INVERSE PROBLEMS, 2014, 30 (11)
[8]   The Joint UK Land Environment Simulator (JULES), model description - Part 2: Carbon fluxes and vegetation dynamics [J].
Clark, D. B. ;
Mercado, L. M. ;
Sitch, S. ;
Jones, C. D. ;
Gedney, N. ;
Best, M. J. ;
Pryor, M. ;
Rooney, G. G. ;
Essery, R. L. H. ;
Blyth, E. ;
Boucher, O. ;
Harding, R. J. ;
Huntingford, C. ;
Cox, P. M. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (03) :701-722
[9]   Process-Based Climate Model Development Harnessing Machine Learning: I. A Calibration Tool for Parameterization Improvement [J].
Couvreux, Fleur ;
Hourdin, Frederic ;
Williamson, Daniel ;
Roehrig, Romain ;
Volodina, Victoria ;
Villefranque, Najda ;
Rio, Catherine ;
Audouin, Olivier ;
Salter, James ;
Bazile, Eric ;
Brient, Florent ;
Favot, Florence ;
Honnert, Rachel ;
Lefebvre, Marie-Pierre ;
Madeleine, Jean-Baptiste ;
Rodier, Quentin ;
Xu, Wenzhe .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2021, 13 (03)
[10]   A canopy conductance and photosynthesis model for use in a GCM land surface scheme [J].
Cox, PM ;
Huntingford, C ;
Harding, RJ .
JOURNAL OF HYDROLOGY, 1998, 212 (1-4) :79-94