On some properties of traveling water waves with vorticity

被引:28
|
作者
Varvaruca, Eugen [1 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
关键词
water waves; vorticity; maximum principle;
D O I
10.1137/070697513
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for a large class of vorticity functions the crests of any corresponding traveling gravity water wave of finite depth are necessarily points of maximal horizontal velocity. We also show that for waves with nonpositive vorticity the pressure everywhere in the fluid is larger than the atmospheric pressure. A related a priori estimate for waves with nonnegative vorticity is also given.
引用
收藏
页码:1686 / 1692
页数:7
相关论文
共 50 条
  • [21] STEADY PERIODIC EQUATORIAL WATER WAVES WITH VORTICITY
    Chu, Jifeng
    Escher, Joachim
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (08) : 4713 - 4729
  • [22] A Hamiltonian formulation of water waves with constant vorticity
    Wahlen, Erik
    LETTERS IN MATHEMATICAL PHYSICS, 2007, 79 (03) : 303 - 315
  • [23] A Hamiltonian Formulation of Water Waves with Constant Vorticity
    Erik Wahlén
    Letters in Mathematical Physics, 2007, 79 : 303 - 315
  • [24] Two-component equations modelling water waves with constant vorticity
    Escher, Joachim
    Henry, David
    Kolev, Boris
    Lyons, Tony
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (01) : 249 - 271
  • [25] Two-component equations modelling water waves with constant vorticity
    Joachim Escher
    David Henry
    Boris Kolev
    Tony Lyons
    Annali di Matematica Pura ed Applicata (1923 -), 2016, 195 : 249 - 271
  • [26] Traveling-Standing Water Waves
    Wilkening, Jon
    FLUIDS, 2021, 6 (05)
  • [27] Stability of traveling water waves on the sphere
    Panayotaros, P
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2001, 55 (4-6) : 577 - 584
  • [28] Regularity for steady periodic capillary water waves with vorticity
    Henry, David
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 370 (1964): : 1616 - 1628
  • [29] The Bernoulli boundary condition for traveling water waves
    Vasan, Vishal
    Deconinck, Bernard
    APPLIED MATHEMATICS LETTERS, 2013, 26 (04) : 515 - 519
  • [30] Bifurcation analysis for axisymmetric capillary water waves with vorticity and swirl
    Erhardt, Andre H.
    Wahlen, Erik
    Weber, Jorg
    STUDIES IN APPLIED MATHEMATICS, 2022, 149 (04) : 904 - 942