Global regularity for solutions to 2D generalized MHD equations with multiple exponential upper bound uniformly in time

被引:2
作者
Zhao, Jiefeng [1 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454003, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
2D; Generalized MHD equation; Global regularity; Multiple exponential upper bound; MAXIMUM PRINCIPLE; MAGNETOHYDRODYNAMICS; SYSTEM; DISSIPATION; CRITERION;
D O I
10.1016/j.jmaa.2022.126306
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies strong solutions to 2D generalized MHD equations with velocity dissipation given by Lambda(2 alpha) and magnetic diffusion given by reducing about double logarithmic diffusion from standard Laplacian diffusion that is given by a Fourier multiplier with its symbol given by vertical bar xi vertical bar(2)/log log(e(k+1) + vertical bar xi vertical bar) log log log (e(k+1) + vertical bar xi vertical bar) ... log log .... log (e(k+1) + vertical bar xi vertical bar)). We prove that there exists a unique global solution in Sobolev spaces having at least a (k + 1)-multiple exponential upper bound uniformly in times when alpha > 1/4 which implies that it is difficult to obtain the global regular solution even for reducing logarithm-type diffusion for magnetic field if the dissipation is small for velocity field. Furthermore, this implies that the well-known global regularity problem on the 2D resistive MHD equations is a critical open problem. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 37 条
[1]   BEYOND THE BKM CRITERION FOR THE 2D RESISTIVE MAGNETOHYDRODYNAMIC EQUATIONS [J].
Agelas, Leo .
ANALYSIS & PDE, 2018, 11 (04) :899-918
[2]   Global regularity for logarithmically critical 2D MHD equations with zero viscosity [J].
Agelas, Leo .
MONATSHEFTE FUR MATHEMATIK, 2016, 181 (02) :245-266
[3]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
[4]   GLOBAL REGULARITY FOR A SLIGHTLY SUPERCRITICAL HYPERDISSIPATIVE NAVIER-STOKES SYSTEM [J].
Barbato, David ;
Morandin, Francesco ;
Romito, Marco .
ANALYSIS & PDE, 2014, 7 (08) :2009-2027
[5]  
Bertozzi AL., 2002, Vorticity and Incompressible Flow, DOI 10.1017/CBO9780511613203
[6]   THE 2D INCOMPRESSIBLE MAGNETOHYDRODYNAMICS EQUATIONS WITH ONLY MAGNETIC DIFFUSION [J].
Cao, Chongsheng ;
Wu, Jiahong ;
Yuan, Baoquan .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (01) :588-602
[7]   The 2D MHD equations with horizontal dissipation and horizontal magnetic diffusion [J].
Cao, Chongsheng ;
Regmi, Dipendra ;
Wu, Jiahong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (07) :2661-2681
[8]   Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion [J].
Cao, Chongsheng ;
Wu, Jiahong .
ADVANCES IN MATHEMATICS, 2011, 226 (02) :1803-1822
[9]   A maximum principle applied to quasi-geostrophic equations [J].
Córdoba, A ;
Córdoba, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 249 (03) :511-528
[10]   Global cauchy problem of 2D generalized MHD equations [J].
Fan, Jishan ;
Malaikah, Honaida ;
Monaquel, Satha ;
Nakamura, Gen ;
Zhou, Yong .
MONATSHEFTE FUR MATHEMATIK, 2014, 175 (01) :127-131