A refined criterion and lower bounds for the blow-up time in a parabolic-elliptic chemotaxis system with nonlinear diffusion

被引:14
|
作者
Marras, Monica [1 ]
Nishino, Teruto [1 ]
Viglialoro, Giuseppe [1 ]
机构
[1] Univ Cagliari, Dipartimento Matemat & Informat, Viale Merello 92, I-09123 Cagliari, Italy
关键词
Blow-up time; Chemotaxis system; Nonlinear diffusion; Lower bound; KELLER-SEGEL SYSTEM; BOUNDEDNESS; MODEL;
D O I
10.1016/j.na.2019.111725
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with unbounded solutions to the following zero-flux chemotaxis system {u(t) = del center dot[(u + alpha)(m1-1 del u-)chi(u(u + alpha)m2-2 del u)] (x, t) epsilon Omega x (0, T-max), (lozenge) 0 = Delta v - M + u (x, t) epsilon Omega x (0, T-max) where alpha > 0, Omega is a smooth and bounded domain of R-n, with n >= 1, t is an element of (0, T-max) is T-max the blow-up time, and m(1), m(2) are real numbers. Given a sufficiently smooth initial data u(0) := u(x, 0) >= 0 and set M := 1/vertical bar Omega vertical bar integral(Omega) u(0)(x) dx, from the literature it is known that under a proper interplay between the above parameters m(1), m(2) and the extra condition integral(Omega) v(x, t) dx = 0, system (lozenge) possesses for any chi > 0 a unique classical solution which becomes unbounded at t NE arrow T-max. In this investigation we first show that for p(0) > n/2 (m(2) - m(1)) any blowing up classical solution in L-p0(Omega)-norm blows up also in L-infinity (Omega)-norm. Then we estimate the blow-up time Tmax providing a lower bound T-max (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] UPPER AND LOWER BOUNDS FOR THE BLOW-UP TIME IN QUASILINEAR REACTION DIFFUSION PROBLEMS
    Ding, Juntang
    Shen, Xuhui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (10): : 4243 - 4254
  • [42] ON THE BLOW-UP TIME OF A PARABOLIC SYSTEM WITH DAMPING TERMS
    Viglialoro, Giuseppe
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2014, 67 (09): : 1223 - 1232
  • [43] Blow-up in a parabolic-elliptic Keller-Segel system with density-dependent sublinear sensitivity and logistic source
    Tanaka, Yuya
    Yokota, Tomomi
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (12) : 7372 - 7396
  • [44] A BLOW-UP RESULT FOR THE CHEMOTAXIS SYSTEM WITH NONLINEAR SIGNAL PRODUCTION AND LOGISTIC SOURCE
    Yi, Hong
    Mu, Chunlai
    Xu, Guangyu
    Dai, Pan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (05): : 2537 - 2559
  • [45] Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system
    Cieslak, Tomasz
    Laurencot, Philippe
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (01): : 437 - 446
  • [46] Blow up criterion for a hyperbolic-parabolic system arising from chemotaxis
    Fan, Jishan
    Zhao, Kun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (02) : 687 - 695
  • [47] A critical blow-up exponent in a chemotaxis system with nonlinear signal production
    Winkler, Michael
    NONLINEARITY, 2018, 31 (05) : 2031 - 2056
  • [48] Lower bounds for blow-up time in nonlocal parabolic problem under Robin boundary conditions
    Wang, Yuxiang
    Fang, Zhong Bo
    Yi, Su-Cheol
    APPLICABLE ANALYSIS, 2019, 98 (08) : 1403 - 1414
  • [49] Blow-up time estimates and simultaneous blow-up of solutions in nonlinear diffusion problems
    Liu, Bingchen
    Wu, Guicheng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (02) : 597 - 614
  • [50] Lower bounds for the blow-up time to a nonlinear viscoelastic wave equation with strong damping
    Peng, Xiaoming
    Shang, Yadong
    Zheng, Xiaoxiao
    APPLIED MATHEMATICS LETTERS, 2018, 76 : 66 - 73