A Class of Three-Dimensional Quadratic Systems with Ten Limit Cycles

被引:13
作者
Du Chaoxiong [1 ]
Liu Yirong [2 ]
Huang Wentao [3 ]
机构
[1] Hunan Shaoyang Univ, Dept Math, Shaoyang 422000, Hunan, Peoples R China
[2] Cent S Univ, Sch Math, Changsha 410083, Hunan, Peoples R China
[3] Guilin Univ Aerosp Technol, Guilin 541004, Guangxi, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2016年 / 26卷 / 09期
基金
中国国家自然科学基金;
关键词
Three-dimensional quadratic system; symmetrical vector field; simultaneous Hopf bifurcation; Lyapunov constants; limit cycles; SINGULAR POINT; BIFURCATION;
D O I
10.1142/S0218127416501492
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our work is concerned with a class of three-dimensional quadratic systems with two symmetric singular points which can yield ten small limit cycles. The method used is singular value method, we obtain the expressions of the first five focal values of the two singular points that the system has. Both singular symmetric points can be fine foci of fifth order at the same time. Moreover, we obtain that each one bifurcates five small limit cycles under a certain coefficient perturbed condition, consequently, at least ten limit cycles can appear by simultaneous Hopf bifurcation.
引用
收藏
页数:11
相关论文
共 18 条
  • [1] Andronov A., 1973, Theory of Bifurcations of Dynamic Systems on a Plane
  • [2] Bifurcation of limit cycles from a 4-dimensional center in Rm in resonance 1: N
    Barreira, Luis
    Llibre, Jaume
    Valls, Claudia
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (02) : 754 - 768
  • [3] Bifurcation of limit cycles from an n-dimensional linear center inside a class of piecewise linear differential systems
    Cardin, Pedro Toniol
    de Carvalho, Tiago
    Llibre, Jaume
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (01) : 143 - 152
  • [4] Du C., 2014, INT J BIFURCAT CHAOS, V24
  • [5] Du C., 2016, ACTA MATH A IN PRESS
  • [6] Du C., 2014, INT J BIFURCAT CHAOS, V24
  • [7] Du CX, 2015, INT J DYN SYST DIFFE, V5, P175
  • [8] Behavior of limit cycle bifurcations for a class of quartic Kolmogorov models in a symmetrical vector field
    Du, Chaoxiong
    Liu, Yirong
    Huang, Wentao
    [J]. APPLIED MATHEMATICAL MODELLING, 2016, 40 (5-6) : 4094 - 4108
  • [9] Center problem and the bifurcation of limit cycles for a cubic polynomial system
    Du, Chaoxiong
    Huang, Wentao
    Zhang, Qi
    [J]. APPLIED MATHEMATICAL MODELLING, 2015, 39 (17) : 5200 - 5215
  • [10] Limit Cycles Bifurcations for a Class of 3-Dimensional Quadratic Systems
    Du, Chaoxiong
    Wang, Qinlong
    Liu, Yirong
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2015, 136 (01) : 1 - 18