Numerical simulation of fractional-order dynamical systems in noisy environments

被引:30
|
作者
Mostaghim, Zeinab Salamat [1 ]
Moghaddam, Behrouz Parsa [1 ]
Haghgozar, Hossein Samimi [2 ]
机构
[1] Islamic Azad Univ, Lahijan Branch, Dept Math, Lahijan, Iran
[2] Univ Guilan, Fac Math Sci, Dept Stat, Rasht, Iran
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2018年 / 37卷 / 05期
关键词
Fractional calculus; Stochastic calculus; Fractional differential equations; Fractional electrical circuits; Computational method; 26A33; 34A08; 62L20; 60H35; STOCHASTIC DIFFERENTIAL-EQUATIONS; ELECTRICAL CIRCUITS; TRANSMISSION-LINES; ATANGANA-BALEANU; STOCK-PRICE; RL; PARAMETERS; RC; BEHAVIOR;
D O I
10.1007/s40314-018-0698-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the fully discrete scheme is proposed based on the Simpson's quadrature formula to approximate fractional-order integrals for noisy signals. This strategy is extended to simulate the response of fractional-order differential systems in noisy environments. The proposed technique is considered in determining statistical indicators for noisy signals in fractional electrical networks with white noise-influenced potential sources.
引用
收藏
页码:6433 / 6447
页数:15
相关论文
共 50 条
  • [31] Numerical simulation technique for fractional-order equation in fractal media
    Cai, Xin
    Liu, Fawang
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 2102 - 2106
  • [32] The Generalized Fractional-Order Fisher Equation: Stability and Numerical Simulation
    Inan, Bilge
    SYMMETRY-BASEL, 2024, 16 (04):
  • [33] Fractional-order ADRC framework for fractional-order parallel systems
    Li, Zong-yang
    Wei, Yi-heng
    Wang, Jiachang
    Li, Aug
    Wang, Jianli
    Wang, Yong
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 1813 - 1818
  • [34] Dynamical effects of hypergraph links in a network of fractional-order complex systems
    Ramasamy, Mohanasubha
    Kumarasamy, Suresh
    Srinivasan, Ashokkumar
    Subburam, Pavithra
    Rajagopal, Karthikeyan
    CHAOS, 2022, 32 (12)
  • [35] Future challenges in the fractional-order dynamical systems: from mathematics to applications
    Munoz-Pacheco, Jesus M.
    Wei, Zhouchao
    Volos, Christos
    Sambas, Aceng
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2023, 9
  • [36] An Efficient Analytical Approach for the Solution of Certain Fractional-Order Dynamical Systems
    Qin, Ya
    Khan, Adnan
    Ali, Izaz
    Al Qurashi, Maysaa
    Khan, Hassan
    Shah, Rasool
    Baleanu, Dumitru
    ENERGIES, 2020, 13 (11)
  • [37] Analysis of Fractional-Order Nonlinear Dynamical Systems by Using Different Techniques
    Manoj Singh
    Mukesh Pal Singh
    Mohammad Tamsir
    Mohammad Asif
    International Journal of Applied and Computational Mathematics, 2025, 11 (2)
  • [38] The fractional-order marriage–divorce mathematical model: numerical investigations and dynamical analysis
    Mohammad Izadi
    Pundikala Veeresha
    Waleed Adel
    The European Physical Journal Plus, 139
  • [39] Application of Numerical Inverse Laplace Transform Methods for Simulation of Distributed Systems with Fractional-Order Elements
    R-Smith, Nawfal Al-Zubaidi
    Kartci, Aslihan
    Brancik, Lubomir
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2018, 27 (11)
  • [40] Dynamical analysis fractional-order financial system using efficient numerical methods
    Gao, Wei
    Veeresha, P.
    Baskonus, Haci Mehmet
    APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2023, 31 (01):