Numerical simulation of fractional-order dynamical systems in noisy environments

被引:30
|
作者
Mostaghim, Zeinab Salamat [1 ]
Moghaddam, Behrouz Parsa [1 ]
Haghgozar, Hossein Samimi [2 ]
机构
[1] Islamic Azad Univ, Lahijan Branch, Dept Math, Lahijan, Iran
[2] Univ Guilan, Fac Math Sci, Dept Stat, Rasht, Iran
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2018年 / 37卷 / 05期
关键词
Fractional calculus; Stochastic calculus; Fractional differential equations; Fractional electrical circuits; Computational method; 26A33; 34A08; 62L20; 60H35; STOCHASTIC DIFFERENTIAL-EQUATIONS; ELECTRICAL CIRCUITS; TRANSMISSION-LINES; ATANGANA-BALEANU; STOCK-PRICE; RL; PARAMETERS; RC; BEHAVIOR;
D O I
10.1007/s40314-018-0698-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the fully discrete scheme is proposed based on the Simpson's quadrature formula to approximate fractional-order integrals for noisy signals. This strategy is extended to simulate the response of fractional-order differential systems in noisy environments. The proposed technique is considered in determining statistical indicators for noisy signals in fractional electrical networks with white noise-influenced potential sources.
引用
收藏
页码:6433 / 6447
页数:15
相关论文
共 50 条
  • [21] NUMERICAL SIMULATION OF THE FRACTIONAL-ORDER RoSSLER CHAOTIC SYSTEMS WITH GRuNWALD-LETNIKOV FRACTIONAL DERIVATIVE
    Li, Xiaoyu
    Wang, Yu-Lan
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (08)
  • [22] Dynamical analysis of fractional-order Rossler and modified Lorenz systems
    Letellier, Christophe
    Aguirre, Luis A.
    PHYSICS LETTERS A, 2013, 377 (28-30) : 1707 - 1719
  • [23] Chaotic behavior of a class of discontinuous dynamical systems of fractional-order
    Danca, Marius-F.
    NONLINEAR DYNAMICS, 2010, 60 (04) : 525 - 534
  • [24] A Technique for Studying a Class of Fractional-Order Nonlinear Dynamical Systems
    Mahmoud, Gamal M.
    Farghaly, Ahmed A. M.
    Shoreh, A. A. -H.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (09):
  • [25] On Learning Discrete-Time Fractional-Order Dynamical Systems
    Chatterjee, Sarthak
    Pequito, Sergio
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 4335 - 4340
  • [26] Chaotic behavior of a class of discontinuous dynamical systems of fractional-order
    Marius-F. Danca
    Nonlinear Dynamics, 2010, 60 : 525 - 534
  • [27] Dynamical Analysis of a Fractional-Order Boost Converter with Fractional-Order Memristive Load
    Wu, Chaojun
    Zhang, Qi
    Yang, Ningning
    Jia, Rong
    Liu, Chongxin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (03):
  • [28] Dynamical Properties of Fractional-Order Memristor
    Wang, Shao Fu
    Ye, Aiqin
    SYMMETRY-BASEL, 2020, 12 (03):
  • [29] Dynamical Behavior of Hepatitis B Fractional-order Model with Modeling and Simulation
    Farman, Muhammad
    Ahmad, Aqeel
    Muslim, Humaira
    Ul Haque, Ehsan
    Ahmad, M. O.
    JOURNAL OF BIOCHEMICAL TECHNOLOGY, 2019, 10 (03) : 11 - 17
  • [30] Fractional-order dynamical models of love
    Ahmad, Wajdi M.
    El-Khazali, Reyad
    CHAOS SOLITONS & FRACTALS, 2007, 33 (04) : 1367 - 1375