Numerical simulation of fractional-order dynamical systems in noisy environments

被引:30
|
作者
Mostaghim, Zeinab Salamat [1 ]
Moghaddam, Behrouz Parsa [1 ]
Haghgozar, Hossein Samimi [2 ]
机构
[1] Islamic Azad Univ, Lahijan Branch, Dept Math, Lahijan, Iran
[2] Univ Guilan, Fac Math Sci, Dept Stat, Rasht, Iran
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2018年 / 37卷 / 05期
关键词
Fractional calculus; Stochastic calculus; Fractional differential equations; Fractional electrical circuits; Computational method; 26A33; 34A08; 62L20; 60H35; STOCHASTIC DIFFERENTIAL-EQUATIONS; ELECTRICAL CIRCUITS; TRANSMISSION-LINES; ATANGANA-BALEANU; STOCK-PRICE; RL; PARAMETERS; RC; BEHAVIOR;
D O I
10.1007/s40314-018-0698-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the fully discrete scheme is proposed based on the Simpson's quadrature formula to approximate fractional-order integrals for noisy signals. This strategy is extended to simulate the response of fractional-order differential systems in noisy environments. The proposed technique is considered in determining statistical indicators for noisy signals in fractional electrical networks with white noise-influenced potential sources.
引用
收藏
页码:6433 / 6447
页数:15
相关论文
共 50 条
  • [1] Numerical simulation of fractional-order dynamical systems in noisy environments
    Zeinab Salamat Mostaghim
    Behrouz Parsa Moghaddam
    Hossein Samimi Haghgozar
    Computational and Applied Mathematics, 2018, 37 : 6433 - 6447
  • [2] Numerical simulation algorithm for fractional-order systems implemented in CUDA
    Rosu, Florin
    Bonchis, Cosmin
    Kaslik, Eva
    2020 22ND INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2020), 2020, : 63 - 66
  • [3] An efficient numerical simulation of chaos dynamical behaviors for fractional-order Rössler chaotic systems with Caputo fractional derivative
    Wang, Ji-Lei
    Wang, Yu-Lan
    Li, Xiao-Yu
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2024, 43 (02) : 609 - 616
  • [4] Numerical Simulation of the Fractional-Order Lorenz Chaotic Systems with Caputo Fractional Derivative
    Dai, Dandan
    Li, Xiaoyu
    Li, Zhiyuan
    Zhang, Wei
    Wang, Yulan
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 135 (02): : 1371 - 1392
  • [5] Analogue Realization of Fractional-Order Dynamical Systems
    Dorcak, Lubomir
    Valsa, Juraj
    Gonzalez, Emmanuel
    Terpak, Jan
    Petras, Ivo
    Pivka, Ladislav
    ENTROPY, 2013, 15 (10): : 4199 - 4214
  • [6] MODELING AND IDENTIFICATION OF FRACTIONAL-ORDER DYNAMICAL SYSTEMS
    Dorcak, L'ubomir
    Valsa, Juraj
    Terpak, Jan
    Horovcak, Pavel
    Gonzalez, Emmanuel
    11TH INTERNATIONAL MULTIDISCIPLINARY SCIENTIFIC GEOCONFERENCE (SGEM 2011), VOL II, 2011, : 553 - +
  • [7] Global fractional-order projective dynamical systems
    Wu Zeng-bao
    Zou Yun-zhi
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (08) : 2811 - 2819
  • [8] The Stochastic α method:: A numerical method for simulation of noisy second order dynamical systems
    Rajan, Nagalinga
    Raha, Soumyendu
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2008, 23 (02): : 91 - 116
  • [9] The stochastic α method: A numerical method for simulation of noisy second order dynamical systems
    Rajan, Nagalinga
    Raha, Soumyendu
    CMES - Computer Modeling in Engineering and Sciences, 2008, 23 (02): : 91 - 116
  • [10] Numerical simulation of the fractional-order control system
    Cai X.
    Liu F.
    J. Appl. Math. Comp., 2007, 1-2 (229-241): : 229 - 241