On the existence of stable charged Q-balls

被引:21
作者
Benci, Vieri [1 ,2 ]
Fortunato, Donato [3 ]
机构
[1] Univ Pisa, Dipartimento Matemat Applicata U Dini, I-56127 Pisa, Italy
[2] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
[3] Univ Bari Aldo Moro, Dipartimento Matemat, I-70125 Bari, Italy
关键词
gauge field theory; Maxwell equations; partial differential equations; solitons; KLEIN-GORDON; HYLOMORPHIC SOLITONS; SOLITARY WAVES; EQUATION;
D O I
10.1063/1.3629848
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper concerns hylomorphic solitons, namely, stable, solitary waves whose existence is related to the ratio energy/charge. In theoretical physics, the name Q-ball refers to a type of hylomorphic solitons or solitary waves relative to the nonlinear Klein-Gordon equation. We are interested in the existence of charged Q-balls, namely, Q-balls for the nonlinear Klein-Gordon equation coupled with the Maxwell equations. In this case, the charge reduces to the electric charge. The main result of this paper establishes that stable, charged Q-balls exist provided that the interaction between the matter and the gauge field is sufficiently small.
引用
收藏
页数:20
相关论文
共 24 条
[1]  
Badiale M., 2004, REND SEM MATH U POL, V62, P107
[2]  
Bellazzini J, 2010, ADV NONLINEAR STUD, V10, P481
[3]  
Bellazzini J, 2009, DYNAM PART DIFFER EQ, V6, P311
[4]   Solitary waves in the nonlinear wave equation and in gauge theories [J].
Benci, Vieri ;
Fortunato, Donato .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2007, 1 (01) :61-86
[5]  
Benci V, 2008, ADV NONLINEAR STUD, V8, P327
[6]   Hamiltonian formulation of the Klein-Gordon-Maxwell equations [J].
Benci, Vieri ;
Fortunato, Donato .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2011, 22 (02) :113-134
[7]   HYLOMORPHIC SOLITONS ON LATTICES [J].
Benci, Vieri ;
Fortunato, Donato .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (03) :875-897
[8]   Spinning Q-Balls for the Klein-Gordon-Maxwell Equations [J].
Benci, Vieri ;
Fortunato, Donato .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 295 (03) :639-668
[9]  
Benci V, 2009, REND LINCEI-MAT APPL, V20, P243
[10]   Hylomorphic solitons [J].
Benci, Vieri .
MILAN JOURNAL OF MATHEMATICS, 2009, 77 (01) :271-332