The influence of forced-air cooling on a 3D printed PLA part manufactured by fused filament fabrication

被引:76
|
作者
Lee, Chun-Ying [1 ]
Liu, Chung-Yin [1 ]
机构
[1] Natl Taipei Univ Technol, Grad Inst Mfg Technol, Taipei 10608, Taiwan
关键词
3D printing; PLA material; Fused filament fabrication; Forced cooling; Tensile strength; POLY(LACTIC ACID); MECHANICAL-PROPERTIES; PROCESS PARAMETERS; TEMPERATURE; PERFORMANCE; STRENGTH; QUALITY;
D O I
10.1016/j.addma.2018.11.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The dimensional quality and mechanical properties of a fused filament fabrication (FFF)-printed 3D model are influenced by several process parameters. A forced-air cooling system that moves along with the print head was designed and installed on a commercial 3D FFF printer to control the cooling of the printed model. The quality of the printed polylactide (PLA) model, including the dimensions and mechanical properties, was investigated for different cooling air velocities. It was found that the cooling air velocity had different influences on the dimensional quality and mechanical strength of the printed model. More specifically, higher cooling speeds generated better geometric accuracy but lower mechanical strength. With the highest and lowest cooling air speeds of 5 m/s and 0 m/s, respectively, the tensile strengths of the printed models differed by 4-fold. In order to determine a suitable cooling air velocity setting for each specific printing material, a design model was proposed. The determined printing parameters were employed in the fabrication of a Rubik's cube, as an example. The assembled cube demonstrated satisfactory performance both in the dimensional quality and in the mechanical function. Therefore, the cooling air velocity can be employed as an additional control parameter in 3D printing for a specified model.
引用
收藏
页码:196 / 203
页数:8
相关论文
共 50 条
  • [21] Effect of 3D Printing Parameters on the Fatigue Properties of Parts Manufactured by Fused Filament Fabrication: A Review
    Bakhtiari, Hamed
    Aamir, Muhammad
    Tolouei-Rad, Majid
    APPLIED SCIENCES-BASEL, 2023, 13 (02):
  • [22] Effect of nozzle diameter on mechanical and geometric performance of 3D printed carbon fibre-reinforced composites manufactured by fused filament fabrication
    Miguel Chacon, Jesus
    Angel Caminero, Miguel
    Jose Nunez, Pedro
    Garcia-Plaza, Eustaquio
    Becar, Jean Paul
    RAPID PROTOTYPING JOURNAL, 2021, 27 (04) : 769 - 784
  • [23] NON-PLANAR 3D PRINTED ELEMENTS ON TEXTILE SUBSTRATE USING A FUSED FILAMENT FABRICATION 3D PRINTER
    Muenks, Dominik
    Eckelmann, Luca
    Kyosev, Yordan
    AUTEX RESEARCH JOURNAL, 2023, 23 (04) : 495 - 503
  • [24] Surface modification of fused filament fabrication (FFF) 3D printed substrates by inkjet printing polyimide for printed electronics
    Roach, Devin J.
    Roberts, Christopher
    Wong, Janet
    Kuang, Xiao
    Kovitz, Joshua
    Zhang, Qiang
    Spence, Thomas G.
    Qi, H. Jerry
    ADDITIVE MANUFACTURING, 2020, 36
  • [25] PLA conductive filament for 3D printed smart sensing applications
    Marasso, Simone Luigi
    Cocuzza, Matteo
    Bertana, Valentina
    Perrucci, Francesco
    Tommasi, Alessio
    Ferrero, Sergio
    Scaltrito, Luciano
    Pirri, Candido Fabrizio
    RAPID PROTOTYPING JOURNAL, 2018, 24 (04) : 739 - 743
  • [26] Fabrication and optimisation of a fused filament 3D-printed microfluidic platform
    Tothill, A. M.
    Partridge, M.
    James, S. W.
    Tatam, R. P.
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2017, 27 (03)
  • [27] A 3D weaving infill pattern for fused filament fabrication
    Yuan Yao
    Cheng Ding
    Mohamed Aburaia
    Maximilian Lackner
    Lanlan He
    The International Journal of Advanced Manufacturing Technology, 2021, 117 : 3101 - 3114
  • [28] Embedded electrical tracks in 3D printed objects by fused filament fabrication of highly conductive composites
    Tan, J. C.
    Low, H. Y.
    ADDITIVE MANUFACTURING, 2018, 23 : 294 - 302
  • [29] A 3D weaving infill pattern for fused filament fabrication
    He, Lanlan (linda0304@shu.edu.cn), 1600, Springer Science and Business Media Deutschland GmbH (117): : 9 - 10
  • [30] 3D printed bioactive and antibacterial silicate glass-ceramic scaffold by fused filament fabrication
    Marsh, Adam C.
    Zhang, Yaozhong
    Poli, Lucrezia
    Hammer, Neal
    Roch, Aljoscha
    Crimp, Martin
    Chatzistavrou, Xanthippi
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2021, 118 (118):