Applicability of Machine Learning Model to Simulate Atmospheric CO2 Variability

被引:10
作者
Girach, Imran A. [1 ,2 ]
Ponmalar, M. [3 ]
Murugan, S. [4 ]
Rahman, P. Abdul [5 ]
Babu, S. Suresh [1 ]
Ramachandran, Radhika [1 ]
机构
[1] ISRO, Space Phys Lab, Vikram Sarabhai Space Ctr, Thiruvananthapuram 695022, Kerala, India
[2] ISRO, Space Applicat Ctr, Ahmadabad 380015, Gujarat, India
[3] ISRO, ISRO Inertial Syst Unit, Thiruvananthapuram 695022, Kerala, India
[4] ISRO, ISRO Prop Complex, Mahendragiri 627109, India
[5] ISRO, Satish Dhawan Space Ctr, Sriharikota 524124, India
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
基金
美国海洋和大气管理局;
关键词
Artificial intelligence (AI); climate change; global warming; greenhouse gases; ORBITING CARBON OBSERVATORY-2;
D O I
10.1109/TGRS.2022.3157774
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Carbon dioxide (CO2) is the most important greenhouse gas influencing the Earth's climate; therefore, accurate modeling of its variability has paramount significance. In this regard, we have performed the simulation of CO2 residue (i.e., detrended depersonalized CO2) based on input of meteorological parameters (temperature, humidity, pressure, and wind), El Nino index, sea surface temperature, and normalized difference vegetation index in a machine learning (ML) model. Long-term observations available from the World Data Centre for Greenhouse Gases (WDCGG) and the National Oceanic and Atmospheric Administration (NOAA) have been used for training and validation of ML model. The model successfully reproduced 72% of observed variability in CO2 residue with an error of 0.45 ppmv over Mauna Loa (19.54 degrees N; -155.58 degrees E). The cumulative temperature anomaly is found to play a key role in the simulation of CO2 residue over Mauna Loa. Evaluation reveals a reasonably good agreement between modeled and observed CO2 residue (R-2 = 0.20-0.55 and root-mean-square error (RMSE) = 20%-60%) over regional sites and for global mean CO2. However, the model shows a limitation in capturing spikes likely caused by strong local influences. Inclusion of additional input parameters, representing local anthropogenic influences, is recommended to further improve the model performance over regional sites. Our study demonstrates the potential of ML modeling for the simulations of CO2 variability to complement the computationally expensive climate models.
引用
收藏
页数:6
相关论文
共 17 条
[1]  
[Anonymous], 2018, WDCGG DAT SUMM N0 42
[2]   Influence of El Nino on atmospheric CO2 over the tropical Pacific Ocean: Findings from NASA's OCO-2 mission [J].
Chatterjee, A. ;
Gierach, M. M. ;
Sutton, A. J. ;
Feely, R. A. ;
Crisp, D. ;
Eldering, A. ;
Gunson, M. R. ;
O'Dell, C. W. ;
Stephens, B. B. ;
Schimel, D. S. .
SCIENCE, 2017, 358 (6360)
[3]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[4]   Machine learning for predicting greenhouse gas emissions from agricultural soils [J].
Hamrani, Abderrachid ;
Akbarzadeh, Abdolhamid ;
Madramootoo, Chandra A. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 741
[5]   Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) version 2.51 [J].
Joeckel, Patrick ;
Tost, Holger ;
Pozzer, Andrea ;
Kunze, Markus ;
Kirner, Oliver ;
Brenninkmeijer, Carl A. M. ;
Brinkop, Sabine ;
Cai, Duy S. ;
Dyroff, Christoph ;
Eckstein, Johannes ;
Frank, Franziska ;
Garny, Hella ;
Gottschaldt, Klaus-Dirk ;
Graf, Phoebe ;
Grewe, Volker ;
Kerkweg, Astrid ;
Kern, Bastian ;
Matthes, Sigrun ;
Mertens, Mariano ;
Meul, Stefanie ;
Neumaier, Marco ;
Nuetzel, Matthias ;
Oberlaender-Hayn, Sophie ;
Ruhnke, Roland ;
Runde, Theresa ;
Sander, Rolf ;
Scharffe, Dieter ;
Zahn, Andreas .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2016, 9 (03) :1153-1200
[6]   Analysis of trends in fused AVHRR and MODIS NDVI data for 1982-2006: Indication for a CO2 fertilization effect in global vegetation [J].
Los, S. O. .
GLOBAL BIOGEOCHEMICAL CYCLES, 2013, 27 (02) :318-330
[7]  
Lozowski EP, 1989, J CLIMATE, V2, P1059, DOI 10.1175/1520-0442(1989)002<1059:TUOCMM>2.0.CO
[8]  
2
[9]   Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm [J].
O'Dell, Christopher W. ;
Eldering, Annmarie ;
Wennberg, Paul O. ;
Crisp, David ;
Gunson, Michael R. ;
Fisher, Brendan ;
Frankenberg, Christian ;
Kiel, Matthaus ;
Lindqvist, Hannakaisa ;
Mandrake, Lukas ;
Merrelli, Aronne ;
Natraj, Vijay ;
Nelson, Robert R. ;
Osterman, Gregory B. ;
Payne, Vivienne H. ;
Taylor, Thomas E. ;
Wunch, Debra ;
Drouin, Brian J. ;
Oyafuso, Fabiano ;
Chang, Albert ;
McDuffie, James ;
Smyth, Michael ;
Baker, David F. ;
Basu, Sourish ;
Chevallier, Frederic ;
Crowell, Sean M. R. ;
Feng, Liang ;
Palmer, Paul I. ;
Dubey, Mavendra ;
Garcia, Omaira E. ;
Griffith, David W. T. ;
Hase, Frank ;
Iraci, Laura T. ;
Kivi, Rigel ;
Morino, Isamu ;
Notholt, Justus ;
Ohyama, Hirofumi ;
Petri, Christof ;
Roehl, Coleen M. ;
Sha, Mahesh K. ;
Strong, Kimberly ;
Sussmann, Ralf ;
Te, Yao ;
Uchino, Osamu ;
Velazco, Voltaire A. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2018, 11 (12) :6539-6576
[10]   Analysis of atmospheric CO2 growth rates at Mauna Loa using CO2 fluxes derived from an inverse model [J].
Patra, PK ;
Maksyutov, S ;
Nakazawa, T .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2005, 57 (05) :357-365