Classification and Authentication of Mineral Water Samples using Electronic Tongue and Deep Neural Networks

被引:2
|
作者
Damarla, Seshu Kumar [1 ]
Zhu, Xiuli [2 ]
Kundu, Madhusree [3 ]
机构
[1] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB, Canada
[2] Donghua Univ, Dept Informat Sci & Technol, Shanghai, Peoples R China
[3] Natl Inst Technol Rourkela, Dept Chem Engn, Rourkela, Odisha, India
来源
2021 IEEE THIRD INTERNATIONAL CONFERENCE ON COGNITIVE MACHINE INTELLIGENCE (COGMI 2021) | 2021年
关键词
electronic tongue; long short-term network; convolutional neural network; Variational Autoencoder; multiclass classifier;
D O I
10.1109/CogMI52975.2021.00011
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Supervised multiclass classifiers based on deep neural networks (one-dimensional convolutional neural network (1D-CNN) and long short-term network (LSTM)) are developed to classify and authenticate mineral water samples of commercial brands (Aquafina, Bisleri, Oasis, Kingfisher, Dolphin and McDowell) available in Indian market. Electronic tongue based experiments are conducted to generate output waveforms (current signals) of the water samples of the six brands. Since the data obtained via the experiments are not adequate to train the deep neural networks, Variational Autoencoder (VAE) is used to generate additional current signals for each of the six brands. New database consisting of the experimental data and data generated using VAE is utilized to train and test the classifiers. Classification accuracies obtained by the LSTM and 1D-CNN models are 83.33% and 66.66%, respectively.
引用
收藏
页码:11 / 16
页数:6
相关论文
共 50 条
  • [1] Classification of fissured tongue images using deep neural networks
    Hu, Junwei
    Yan, Zhuangzhi
    Jiang, Jiehui
    TECHNOLOGY AND HEALTH CARE, 2022, 30 : S271 - S283
  • [2] Classification and Discrimination of Different Tunisian Water Samples Using an Electronic Tongue
    Sghaier, K.
    Barhoumi, H.
    Maaref, A.
    Siadat, M.
    Jaffrezic-Renault, N.
    SENSOR LETTERS, 2009, 7 (05) : 683 - 688
  • [3] The e-tongue-based classification and authentication of mineral water samples using cross-correlation-based PCA and Sammon's nonlinear mapping
    Kundu, Palash K.
    Kundu, Madhusree
    JOURNAL OF CHEMOMETRICS, 2013, 27 (11) : 379 - 393
  • [4] Robust Classification of Largely Corrupted Electronic Nose Data Using Deep Neural Networks
    Yoo, YoungJoon
    Kim, Hyun-Il
    Choi, Sang-Il
    IEEE SENSORS JOURNAL, 2021, 21 (04) : 5052 - 5059
  • [5] Classification and authentication of unknown water samples using machine learning algorithms
    Kundu, Palash K.
    Panchariya, P. C.
    Kundu, Madhusree
    ISA TRANSACTIONS, 2011, 50 (03) : 487 - 495
  • [6] TNT detection using a voltammetric electronic tongue based on neural networks
    Garcia Breijo, Eduardo
    Olguin Pinatti, Cristian
    Masot Peris, Rafael
    Alcaniz Fillol, Miguel
    Martinez-Manez, Ramon
    Soto Camino, Juan
    SENSORS AND ACTUATORS A-PHYSICAL, 2013, 192 : 1 - 8
  • [7] Malware Classification using Deep Convolutional Neural Networks
    Kornish, David
    Geary, Justin
    Sansing, Victor
    Ezekiel, Soundararajan
    Pearlstein, Larry
    Njilla, Laurent
    2018 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2018,
  • [8] Assessment of Asteroid Classification Using Deep Convolutional Neural Networks
    Bacu, Victor
    Nandra, Constantin
    Sabou, Adrian
    Stefanut, Teodor
    Gorgan, Dorian
    AEROSPACE, 2023, 10 (09)
  • [9] Verbal Abuse Classification Using Multiple Deep Neural Networks
    Park, Hyunju
    Kim, Hong Kook
    3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (IEEE ICAIIC 2021), 2021, : 316 - 319
  • [10] Brain tumor classification using deep convolutional neural networks
    Nurtay, M.
    Kissina, M.
    Tau, A.
    Akhmetov, A.
    Alina, G.
    Mutovina, N.
    COMPUTER OPTICS, 2025, 49 (02) : 253 - 262