A Context-Aware Anchor-free Tiny Object Detector for Aerial Images

被引:0
作者
Chen, Li-Syuan [1 ]
Way, Der-Lor [2 ]
Shih, Zen-Chung [1 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Inst Multimedia Engn, Hsinchu, Taiwan
[2] Taipei Natl Univ Arts, Dept New Media Art, Taipei 112, Taiwan
来源
INTERNATIONAL WORKSHOP ON ADVANCED IMAGING TECHNOLOGY (IWAIT) 2022 | 2022年 / 12177卷
关键词
Object detection; Self attention; Aerial image;
D O I
10.1117/12.2624186
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Object detection in aerial images is a task of predicting the target categories while locating the objects. Since the different categories of objects may have similar shapes and textures in aerial images, we propose context-aware layer to provide global and robust features for classification and regression branch. In addition, we propose the CentraBox to reduce unnecessary training samples during the training phase. We also propose the instance-level normalization to balance the contributions among the instances. Finally, we compare our method with other methods in terms of accuracy, speed and parameters usage. Moreover, we also compare our own method with different hyper-parameter settings.
引用
收藏
页数:6
相关论文
共 5 条
[1]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/CVPR.2018.00745, 10.1109/TPAMI.2019.2913372]
[2]   Feature Pyramid Networks for Object Detection [J].
Lin, Tsung-Yi ;
Dollar, Piotr ;
Girshick, Ross ;
He, Kaiming ;
Hariharan, Bharath ;
Belongie, Serge .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :936-944
[3]  
Lin YT, 2021, Arxiv, DOI arXiv:1912.00969
[4]   FCOS: Fully Convolutional One-Stage Object Detection [J].
Tian, Zhi ;
Shen, Chunhua ;
Chen, Hao ;
He, Tong .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :9626-9635
[5]   DOTA: A Large-scale Dataset for Object Detection in Aerial Images [J].
Xia, Gui-Song ;
Bai, Xiang ;
Ding, Jian ;
Zhu, Zhen ;
Belongie, Serge ;
Luo, Jiebo ;
Datcu, Mihai ;
Pelillo, Marcello ;
Zhang, Liangpei .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :3974-3983