Accelerating High-Resolution Seismic Imaging by Using Deep Learning

被引:17
作者
Liu, Wei [1 ,2 ]
Cheng, Qian [2 ,3 ]
Liu, Linong [2 ]
Wang, Yun [1 ]
Zhang, Jianfeng [4 ]
机构
[1] China Univ Geosci, Sch Geophys & Informat Technol, Beijing 100083, Peoples R China
[2] Chinese Acad Sci, Inst Geol & Geophys, Key Lab Petr Resources Res, Beijing 100029, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen 518055, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 07期
基金
中国国家自然科学基金;
关键词
seismic imaging; high-resolution; deep learning; acceleration; IMPLEMENTATION; INTERPOLATION; NETWORK;
D O I
10.3390/app10072502
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The emerging applications of deep learning in solving geophysical problems have attracted increasing attention. In particular, it is of significance to enhance the computational efficiency of the computationally intensive geophysical algorithms. In this paper, we accelerate deabsorption prestack time migration (QPSTM), which can yield higher-resolution seismic imaging by compensating absorption and correcting dispersion through deep learning. This is implemented by training a neural network with pairs of small-sized patches of the stacked migrated results obtained by conventional PSTM and deabsorption QPSTM and then yielding the high-resolution imaging volume by prediction with the migrated results of conventional PSTM. We use an encoder-decoder network to highlight the features related to high-resolution migrated results in a high-order dimension space. The training data set of small-sized patches not only reduces the required high-resolution migrated result (for instance, only several inline is required) but leads to a fast convergence in training. The proposed deep-learning approach accelerates the high-resolution imaging by more than 100 times. Field data is used to demonstrate the effectiveness of the proposed method.
引用
收藏
页数:16
相关论文
共 47 条
[1]  
[Anonymous], 2015, P CVPR BOST MA US
[2]  
[Anonymous], 2014, Comput. Sci.
[3]  
[Anonymous], C COMP VIS PATT REC
[4]  
[Anonymous], 2014, 52 ANN M ASS COMP LI
[5]  
[Anonymous], 1995, HDB BRAIN THEORY NEU
[6]  
[Anonymous], 2016, ADV NEUR INF PROC SY, DOI [DOI 10.2165/00129785-200404040-00005, DOI 10.1145/3065386]
[7]  
[Anonymous], 2016, Deep Learning
[8]  
[Anonymous], 2020, IEEE T NEUR NET LEAR, DOI [DOI 10.1109/TNNLS.2019.2929068, 10.1109/TNNLS.2019.2929068]
[9]  
[Anonymous], 2017, P IEEE C COMP VIS PA
[10]  
[Anonymous], 2015, PROC CVPR IEEE