Accelerating High-Resolution Seismic Imaging by Using Deep Learning

被引:16
作者
Liu, Wei [1 ,2 ]
Cheng, Qian [2 ,3 ]
Liu, Linong [2 ]
Wang, Yun [1 ]
Zhang, Jianfeng [4 ]
机构
[1] China Univ Geosci, Sch Geophys & Informat Technol, Beijing 100083, Peoples R China
[2] Chinese Acad Sci, Inst Geol & Geophys, Key Lab Petr Resources Res, Beijing 100029, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen 518055, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 07期
基金
中国国家自然科学基金;
关键词
seismic imaging; high-resolution; deep learning; acceleration; IMPLEMENTATION; INTERPOLATION; NETWORK;
D O I
10.3390/app10072502
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The emerging applications of deep learning in solving geophysical problems have attracted increasing attention. In particular, it is of significance to enhance the computational efficiency of the computationally intensive geophysical algorithms. In this paper, we accelerate deabsorption prestack time migration (QPSTM), which can yield higher-resolution seismic imaging by compensating absorption and correcting dispersion through deep learning. This is implemented by training a neural network with pairs of small-sized patches of the stacked migrated results obtained by conventional PSTM and deabsorption QPSTM and then yielding the high-resolution imaging volume by prediction with the migrated results of conventional PSTM. We use an encoder-decoder network to highlight the features related to high-resolution migrated results in a high-order dimension space. The training data set of small-sized patches not only reduces the required high-resolution migrated result (for instance, only several inline is required) but leads to a fast convergence in training. The proposed deep-learning approach accelerates the high-resolution imaging by more than 100 times. Field data is used to demonstrate the effectiveness of the proposed method.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] High-resolution 3D MR Fingerprinting using parallel imaging and deep learning
    Chen, Yong
    Fang, Zhenghan
    Hung, Sheng-Che
    Chang, Wei-Tang
    Shen, Dinggang
    Lin, Weili
    NEUROIMAGE, 2020, 206
  • [2] A Sequential Iterative Deep Learning Seismic Blind High-Resolution Inversion
    Chen, Hongling
    Gao, Jinghuai
    Gao, Zhaoqi
    Chen, Daoyu
    Yang, Tao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 7817 - 7829
  • [3] Deep-learning-based Q model building for high-resolution imaging
    Ju, Xin
    Xu, Jincheng
    Zhang, Jianfeng
    GEOPHYSICAL PROSPECTING, 2025, 73 (02) : 699 - 711
  • [4] Deep-ER: Deep Learning ECCENTRIC Reconstruction for fast high-resolution neurometabolic imaging
    Weiser, Paul J.
    Langs, Georg
    Bogner, Wolfgang
    Motyka, Stanislav
    Strasser, Bernhard
    Golland, Polina
    Singh, Nalini
    Dietrich, Jorg
    Uhlmann, Erik
    Batchelor, Tracy
    Cahill, Daniel
    Hoffmann, Malte
    Klauser, Antoine
    Andronesi, Ovidiu C.
    NEUROIMAGE, 2025, 309
  • [5] Cloud Detection in High-Resolution Multispectral Satellite Imagery Using Deep Learning
    Morales, Giorgio
    Huaman, Samuel G.
    Telles, Joel
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT III, 2018, 11141 : 280 - 288
  • [6] Feasibility of high-resolution magnetic resonance imaging of the liver using deep learning reconstruction based on the deep learning denoising technique
    Tanabe, Masahiro
    Higashi, Mayumi
    Yonezawa, Teppei
    Yamaguchi, Takahiro
    Iida, Etsushi
    Furukawa, Matakazu
    Okada, Munemasa
    Shinoda, Kensuke
    Ito, Katsuyoshi
    MAGNETIC RESONANCE IMAGING, 2021, 80 : 121 - 126
  • [7] Road Extraction from High-Resolution Remote Sensing Imagery Using Deep Learning
    Xu, Yongyang
    Xie, Zhong
    Feng, Yaxing
    Chen, Zhanlong
    REMOTE SENSING, 2018, 10 (09)
  • [8] Research on High-Resolution Reconstruction of Marine Environmental Parameters Using Deep Learning Model
    Hu, Yaning
    Ma, Liwen
    Zhang, Yushi
    Wu, Zhensen
    Wu, Jiaji
    Zhang, Jinpeng
    Zhang, Xiaoxiao
    REMOTE SENSING, 2023, 15 (13)
  • [9] Deep learning: step forward to high-resolution in vivo shortwave infrared imaging
    Baulin, Vladimir A.
    Usson, Yves
    Le Guevel, Xavier
    JOURNAL OF BIOPHOTONICS, 2021, 14 (07)
  • [10] Simulation-based high-resolution fire danger mapping using deep learning
    Allaire, Frederic
    Filippi, Jean-Baptiste
    Mallet, Vivien
    Vaysse, Florence
    INTERNATIONAL JOURNAL OF WILDLAND FIRE, 2022, 31 (04) : 379 - 394