Application of Deep Learning in the Deployment of an Industrial SCARA Machine for Real-Time Object Detection

被引:15
|
作者
Kapusi, Tibor Peter [1 ]
Erdei, Timotei Istvan [2 ]
Husi, Geza [2 ]
Hajdu, Andras [1 ]
机构
[1] Univ Debrecen, Fac Informat, Dept Data Sci & Visualizat, Kassai Str 26, H-4028 Debrecen, Hungary
[2] Univ Debrecen, Fac Engn, Dept Air & Rd Vehicles, Otemeto Str 24, H-4028 Debrecen, Hungary
关键词
cyber-physical systems; Industry; 4.0; SCARA robot; deep learning; YOLO;
D O I
10.3390/robotics11040069
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In the spirit of innovation, the development of an intelligent robot system incorporating the basic principles of Industry 4.0 was one of the objectives of this study. With this aim, an experimental application of an industrial robot unit in its own isolated environment was carried out using neural networks. In this paper, we describe one possible application of deep learning in an Industry 4.0 environment for robotic units. The image datasets required for learning were generated using data synthesis. There are significant benefits to the incorporation of this technology, as old machines can be smartened and made more efficient without additional costs. As an area of application, we present the preparation of a robot unit which at the time it was originally produced and commissioned was not capable of using machine learning technology for object-detection purposes. The results for different scenarios are presented and an overview of similar research topics on neural networks is provided. A method for synthetizing datasets of any size is described in detail. Specifically, the working domain of a given robot unit, a possible solution to compatibility issues and the learning of neural networks from 3D CAD models with rendered images will be discussed.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Hidden Challenge in Deep-Learning Real-Time Object Detection on Edge Devices
    Nicolas, Marcus F.
    Megherbi, Dalila B.
    2024 IEEE 67TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, MWSCAS 2024, 2024, : 547 - 551
  • [22] Real-time Object Detection with Deep Learning for Robot Vision on Mixed Reality Device
    Guo, Jiazhen
    Chen, Peng
    Jiang, Yinlai
    Yokoi, Hiroshi
    Togo, Shunta
    2021 IEEE 3RD GLOBAL CONFERENCE ON LIFE SCIENCES AND TECHNOLOGIES (IEEE LIFETECH 2021), 2021, : 82 - 83
  • [23] Real-time Indoor Object Detection Based on Deep Learning and Gradient Harmonizing Mechanism
    Chen, Min
    Ren, Xuemei
    Yan, Zhanyi
    PROCEEDINGS OF 2020 IEEE 9TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS'20), 2020, : 772 - 777
  • [24] Machine Learning Based Real-Time Industrial Bin-Picking: Hybrid and Deep Learning Approaches
    Lee, Sukhan
    Lee, Soojin
    PROCEEDINGS OF THE 2021 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2021), 2021, : 597 - 602
  • [25] Real-time classification of EEG signals using Machine Learning deployment
    Chowdhuri, Swati
    Saha, Satadip
    Karmakar, Samadrita
    Chanda, Ankur
    ROMANIAN JOURNAL OF INFORMATION TECHNOLOGY AND AUTOMATIC CONTROL-REVISTA ROMANA DE INFORMATICA SI AUTOMATICA, 2024, 34 (04):
  • [26] Real-time detection of transients in OGLE-IV with application of machine learning
    Klencki, Jakub
    Wyrzykowski, Lukasz
    XXXVII POLISH ASTRONOMICAL SOCIETY MEETING, 2016, 3 : 56 - 58
  • [27] Evaluation of Deep Models for Real-Time Small Object Detection
    Phuoc Pham
    Duy Nguyen
    Tien Do
    Thanh Duc Ngo
    Duy-Dinh Le
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT III, 2017, 10636 : 516 - 526
  • [28] A Real-Time Sequential Deep Extreme Learning Machine Cybersecurity Intrusion Detection System
    Haider, Amir
    Khan, Muhammad Adnan
    Rehman, Abdur
    Rahman, Muhib Ur
    Kim, Hyung Seok
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 66 (02): : 1785 - 1798
  • [29] Real-time detection of deep-sea hydrothermal plume based on machine vision and deep learning
    Wang, Xun
    Cao, Yanpeng
    Wu, Shijun
    Yang, Canjun
    FRONTIERS IN MARINE SCIENCE, 2023, 10
  • [30] Apple detection and counting using real-time video based on deep learning and object tracking
    Gao F.
    Wu Z.
    Suo R.
    Zhou Z.
    Li R.
    Fu L.
    Zhang Z.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2021, 37 (21): : 217 - 224