Hausdorff dimension of Julia sets of Feigenbaum polynomials with high criticality

被引:6
作者
Levin, G [1 ]
Swiatek, G
机构
[1] Hebrew Univ Jerusalem, Dept Math, IL-91904 Jerusalem, Israel
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
D O I
10.1007/s00220-005-1332-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider unimodal polynomials with Feigenbaum topological type and critical points whose orders tend to infinity. It is shown that the hyperbolic dimensions of their Julia set go to 2; furthermore, that the Hausdorff dimensions of the basins of attraction of their Feigenbaum attractors also tend to 2. The proof is based on constructing a limiting dynamics with a flat critical point.
引用
收藏
页码:135 / 148
页数:14
相关论文
共 11 条
[1]   Wild Cantor attractors exist [J].
Bruin, H ;
Keller, G ;
Nowicki, T ;
vanStrien, S .
ANNALS OF MATHEMATICS, 1996, 143 (01) :97-130
[2]  
Eckmann J.-P., 1985, LECT NOTES PHYS, V227
[3]   ANALYTICITY PROPERTIES OF THE FEIGENBAUM FUNCTION [J].
EPSTEIN, H ;
LASCOUX, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 81 (03) :437-453
[4]   Collet, Eckmann and Holder [J].
Graczyk, J ;
Smirnov, S .
INVENTIONES MATHEMATICAE, 1998, 133 (01) :69-96
[5]  
LEVI G, IN PRESS ISRAEL MATH
[6]   Thickness of Julia sets of Feigenbaum polynomials with high order critical points [J].
Levin, G ;
Swiatek, G .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (06) :421-424
[7]  
LEVIN G, IN PRESS COMMUN MATH
[8]  
Mc Mullen C, 1998, ANN MATH STUDIES, V142
[9]   AREA AND HAUSDORFF DIMENSION OF JULIA SETS OF ENTIRE-FUNCTIONS [J].
MCMULLEN, C .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 300 (01) :329-342
[10]  
Przytycki F, 1998, FUND MATH, V155, P189