Spatial data sets pose challenges for discrete choice models because the data are unlikely to be independently and identically distributed. A conditionally parametric spatial probit model is amenable to very large data sets while imposing far less structure on the data than conventional parametric models. We illustrate the approach using data on 474,170 individual lots in the City of Chicago. The results suggest that simple functional forms are not appropriate for explaining the spatial variation in residential land use across the entire city.
引用
收藏
页码:391 / 415
页数:25
相关论文
共 25 条
[1]
[Anonymous], 2022, locfit: Local regression, likelihood and density estimation
机构:
Washington State Univ, Sch Econ Sci, Pullman, WA 99164 USA
Washington State Univ, IMPACT Ctr, Pullman, WA 99164 USAOhio State Univ, Columbus, OH 43210 USA
Brady, Michael
Irwin, Elena
论文数: 0引用数: 0
h-index: 0
机构:
Ohio State Univ, Columbus, OH 43210 USAOhio State Univ, Columbus, OH 43210 USA
机构:
Washington State Univ, Sch Econ Sci, Pullman, WA 99164 USA
Washington State Univ, IMPACT Ctr, Pullman, WA 99164 USAOhio State Univ, Columbus, OH 43210 USA
Brady, Michael
Irwin, Elena
论文数: 0引用数: 0
h-index: 0
机构:
Ohio State Univ, Columbus, OH 43210 USAOhio State Univ, Columbus, OH 43210 USA