Cortical microtubule arrays in the Arabidopsis seedling

被引:41
作者
Lucas, Jessica [1 ]
Shaw, Sidney L. [1 ]
机构
[1] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA
关键词
D O I
10.1016/j.pbi.2007.12.001
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Advances in live-cell imaging technology have provided an unprecedented look at the dynamic behaviors of the plant microtubule cytoskeleton. Recent studies revisit the classic question of how plants create cell shape through the patterned construction of the cell wall. Visualization of the cellulose synthase complex traveling in the plasma membrane has brought a watershed of new information about cellulose deposition. Observation of the cellulose synthase complex tracking precisely over the underlying cortical microtubules has provided clear evidence that the microtubule array pattern serves as a spatial template for cellulose microfibril extrusion. Understanding how the microtubules are organized into specific array patterns remains a challenge, though new ideas are arising from genetic and cell biological studies. Long-term time-lapse observations of the microtubule arrays in light-grown hypocotyl cells have revealed a striking process of microtubule patterning possibly linked to the creation of polylamellate cell walls.
引用
收藏
页码:94 / 98
页数:5
相关论文
共 33 条
[1]   Altered microtubule dynamics by expression of modified α-tubulin protein causes right-handed helical growth in transgenic Arabidopsis plants [J].
Abe, T ;
Hashimoto, T .
PLANT JOURNAL, 2005, 43 (02) :191-204
[2]   Cortical microtubule arrays lose uniform alignment between cells and are oryzalin resistant in the Arabidopsis mutant, radially swollen 6 [J].
Bannigan, Alex ;
Wiedemeier, Allison M. D. ;
Williamson, Richard E. ;
Overall, Robyn L. ;
Baskin, Tobias I. .
PLANT AND CELL PHYSIOLOGY, 2006, 47 (07) :949-958
[3]   Anisotropic expansion of the plant cell wall [J].
Baskin, TI .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2005, 21 :203-222
[4]   Disorganization of cortical microtubules stimulates tangential expansion and reduces the uniformity of cellulose microfibril alignment among cells in the root of Arabidopsis [J].
Baskin, TI ;
Beemster, GTS ;
Judy-March, JE ;
Marga, F .
PLANT PHYSIOLOGY, 2004, 135 (04) :2279-2290
[5]   On the alignment of cellulose microfibrils by cortical microtubules: a review and a model [J].
Baskin, TI .
PROTOPLASMA, 2001, 215 (1-4) :150-171
[6]   The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots [J].
Blilou, I ;
Xu, J ;
Wildwater, M ;
Willemsen, V ;
Paponov, I ;
Friml, J ;
Heidstra, R ;
Aida, M ;
Palme, K ;
Scheres, B .
NATURE, 2005, 433 (7021) :39-44
[7]   Cortical microtubule arrays undergo rotary movements in Arabidopsis hypocotyl epidermal cells [J].
Chan, Jordi ;
Calder, Grant ;
Fox, Samantha ;
Lloyd, Clive .
NATURE CELL BIOLOGY, 2007, 9 (02) :171-U57
[8]   WALL RELAXATION AND THE DRIVING FORCES FOR CELL EXPANSIVE GROWTH [J].
COSGROVE, DJ .
PLANT PHYSIOLOGY, 1987, 84 (03) :561-564
[9]   The molecular basis of plant cell wall extension [J].
Darley, CP ;
Forrester, AM ;
McQueen-Mason, SJ .
PLANT MOLECULAR BIOLOGY, 2001, 47 (1-2) :179-195
[10]   Nonmotile cellulose synthase subunits repeatedly accumulate within localized regions at the plasma membrane in Arabidopsis hypocotyl cells following 2,6-dichlorobenzonitrile treatment [J].
DeBolt, Seth ;
Gutierrez, Ryan ;
Ehrhardt, David W. ;
Somerville, Chris .
PLANT PHYSIOLOGY, 2007, 145 (02) :334-338