On simple labelled graph C*-algebras

被引:11
作者
Jeong, Ja A. [1 ,2 ]
Kim, Sun Ho [1 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 151747, South Korea
关键词
Labelled graph C*-algebra; Simple C*-algebras; CUNTZ-KRIEGER ALGEBRAS; SIMPLICITY;
D O I
10.1016/j.jmaa.2011.08.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the simplicity of the C*-algebra associated to a labelled space (E, G, E), where (E, L) is a labelled graph and (epsilon) over bar is the smallest accommodating set containing all generalized vertices. We prove that if C*(E, L, (epsilon) over bar ) is simple, then (E, L, (epsilon) over bar) is strongly cofinal, and if, in addition, {v} is an element of (epsilon) over bar for every vertex v, then (E, L, (epsilon) over bar) is disagreeable. It is observed that C* (E, L, (epsilon) over bar) is simple whenever (E, L, (epsilon) over bar) is strongly cofinal and disagreeable, which is recently known for the C*-algebra C* (E, L, epsilon(0,-)) associated to a labelled space (E, L, epsilon(0,-)) of the smallest accommodating set epsilon(0,-). (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:631 / 640
页数:10
相关论文
共 11 条
[1]   The ideal structure of the C*-algebras of infinite graphs [J].
Bates, T ;
Hong, JH ;
Raeburn, I ;
Szymanski, W .
ILLINOIS JOURNAL OF MATHEMATICS, 2002, 46 (04) :1159-1176
[2]  
Bates T., 2000, New York J. Maths., V6, P307
[3]  
BATES T., 2007, J. Operator Theory., V57, P101
[4]  
Bates T, 2009, MATH SCAND, V104, P249
[5]   CLASS OF CSTAR-ALGEBRAS AND TOPOLOGICAL MARKOV-CHAINS [J].
CUNTZ, J ;
KRIEGER, W .
INVENTIONES MATHEMATICAE, 1980, 56 (03) :251-268
[6]  
JEONG JA, ARXIV11024161V1MATHO
[7]   Graphs, groupoids, and Cuntz-Krieger algebras [J].
Kumjian, A ;
Pask, D ;
Raeburn, I ;
Renault, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 144 (02) :505-541
[8]   Cuntz-Krieger algebras of directed graphs [J].
Kumjian, A ;
Pask, D ;
Raeburn, I .
PACIFIC JOURNAL OF MATHEMATICS, 1998, 184 (01) :161-174
[9]  
Raeburn I., 2005, CBMS Reg. Conf. Ser. Math., V103
[10]  
Tomforde M, 2003, J OPERAT THEOR, V50, P345