POLYHARMONIC MAPS OF ORDER k WITH FINITE Lp K-ENERGY INTO EUCLIDEAN SPACES

被引:0
作者
Maeta, Shun [1 ]
机构
[1] Shumei Univ, Fac Tourism & Business Management, Chiba 2760003, Japan
基金
日本学术振兴会;
关键词
Polyharmonic maps of order k; biharmonic maps; generalized Chen's conjecture; Chen's conjecture; PROPERLY IMMERSED SUBMANIFOLDS; RIEMANNIAN MANIFOLD; HYPERSURFACES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider polyharmonic maps phi : (M, g) -> E-n of order k from a complete Riemannian manifold into the Euclidean space and let p be a real constant satisfying 2 <= p < infinity. (i) If integral(M) vertical bar Wk-1 vertical bar(p)dv(g) < infinity and integral(M) vertical bar(del) over barW(k-2)vertical bar(2)dv(g) < infinity, then phi is a polyharmonic map of order k - 1. (ii) If integral(M) vertical bar Wk-1 vertical bar(p)dv(g) < infinity and Vol(M, g) = infinity, then phi is a polyharmonic map of order k - 1. Here. W-s = <(Delta)overbar>(s-1) tau(phi) (s = 1,2 ...) and W-0 = phi. As a corollary, we give an affirmative partial answer to the generalized Chen conjecture.
引用
收藏
页码:2227 / 2234
页数:8
相关论文
共 18 条
[1]   Biharmonic properly immersed submanifolds in Euclidean spaces [J].
Akutagawa, Kazuo ;
Maeta, Shun .
GEOMETRIAE DEDICATA, 2013, 164 (01) :351-355
[2]  
Chen B. Y., 1988, SOME OPEN PROBLEMS C
[3]  
Chen B. Y., P PADGE 201 IN PRESS
[4]  
Defever F, 1998, MATH NACHR, V196, P61
[5]  
Dimitric I., 1992, B I MATH ACAD SINICA, V20, P53
[6]  
Eells James, 1983, CBMS REGIONAL C SERI, V50
[7]   A SPECIAL STOKES THEOREM FOR COMPLETE RIEMANNIAN MANIFOLDS [J].
GAFFNEY, MP .
ANNALS OF MATHEMATICS, 1954, 60 (01) :140-145
[8]   HYPERSURFACES IN E(4) WITH HARMONIC CURVATURE VECTOR FIELD [J].
HASANIS, T ;
VLACHOS, T .
MATHEMATISCHE NACHRICHTEN, 1995, 172 :145-169
[9]   2-harmonic maps and their first and second variational formulas [J].
Jiang Guoying .
NOTE DI MATEMATICA, 2008, 28 :209-232
[10]  
Kasue A., 2001, RIEMANNIAN GEOMETRY