Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays

被引:113
作者
Caraballo, T [1 ]
Real, J [1 ]
机构
[1] Univ Sevilla, Dept Ecuac Diferenciales & Anal Numer, E-41080 Seville, Spain
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2003年 / 459卷 / 2040期
关键词
stability; long-time behaviour; two-dimensional Navier-Stokes equations; variable delays;
D O I
10.1098/rspa.2003.1166
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Some results on the asymptotic behaviour of solutions to Navier-Stokes equations when the external force contains some hereditary characteristics are proved. We show two different approaches to prove the convergence of solutions to the stationary one, when this is unique. The first is a direct method, while the second is based on a Razumikhin-type method.
引用
收藏
页码:3181 / 3194
页数:14
相关论文
共 12 条
  • [1] Bensoussan A., 1992, REPRESENTATION CONTR
  • [2] Stochastic functional partial differential equations: existence, uniqueness and asymptotic decay property
    Caraballo, T
    Liu, K
    Truman, A
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (1999): : 1775 - 1802
  • [3] Navier-Stokes equations with delays
    Caraballo, T
    Real, J
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2014): : 2441 - 2453
  • [4] CARABALLO T, 2003, UNPUB ATTRACTORS 2D
  • [5] CONSTANTIN P, 1988, NAVIERSTOKES EQUATIO
  • [6] HALE JK, 1995, INTRO FUNCTIONAL DIF
  • [7] Leray J., 1933, J. Math. Pures Appl, V12, P1
  • [8] Lions J. L., 1969, QUELQUE METHODES RES
  • [9] Razumikhin B., 1960, Avtomat i Telemeh, V21, P740
  • [10] Razumikhin BS., 1956, Prikl Mat Meh, V20, P500