Effect of Amniotic Membrane/Collagen-Based Scaffolds on the Chondrogenic Differentiation of Adipose-Derived Stem Cells and Cartilage Repair

被引:11
作者
Cao, Le [1 ,2 ,3 ]
Tong, Yuling [4 ]
Wang, Xiao [5 ]
Zhang, Qiang [1 ,2 ,3 ]
Qi, Yiying [1 ,2 ,3 ]
Zhou, Chenhe [1 ,2 ,3 ]
Yu, Xinning [1 ,2 ,3 ]
Wu, Yongping [1 ,2 ,3 ]
Miao, Xudong [1 ,2 ,3 ]
机构
[1] Zhejiang Univ, Affiliated Hosp 2, Dept Orthped Surg, Sch Med, Hangzhou, Peoples R China
[2] Zhejiang Univ, Orthped Res Inst, Hangzhou, Peoples R China
[3] Key Lab Motor Syst Dis Res & Precis Therapy Zheji, Hangzhou, Peoples R China
[4] Zhejiang Univ, Affiliated Hosp 2, Dept Gen Practice, Sch Med, Hangzhou, Peoples R China
[5] Shaoxing Shangyu Hosp Tradit Chinese Med, Shaoxing, Peoples R China
来源
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY | 2021年 / 9卷
关键词
ADSCs; PRP; amniotic membrane; stent; knee joint; II COLLAGEN; EXPRESSION; MEMBRANE; TISSUE; CHONDROCYTES; GENE;
D O I
10.3389/fcell.2021.647166
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Objectives: Repairing articular cartilage damage is challenging. Clinically, tissue engineering technology is used to induce stem cell differentiation and proliferation on biological scaffolds to repair defective joints. However, no ideal biological scaffolds have been identified. This study investigated the effects of amniotic membrane/collagen scaffolds on the differentiation of adipose-derived stem cells (ADSCs) and articular cartilage repair.Methods: Adipose tissue of New Zealand rabbits was excised, and ADSCs were isolated and induced for differentiation. An articular cartilage defect model was constructed to identify the effect of amniotic membrane/collagen scaffolds on cartilage repair. Cartilage formation was analyzed by imaging and toluene blue staining. Knee joint recovery in rabbits was examined using hematoxylin and eosin, toluidine, safranine, and immunohistochemistry at 12 weeks post-operation. Gene expression was examined using ELISA, RT-PCR, Western blotting, and immunofluorescence.Results: The adipose tissue was effectively differentiated into ADSCs, which further differentiated into chondrogenic, osteogenic, and lipogenic lineages after 3 weeks' culture in vitro. Compared with platelet-rich plasmon (PRP) scaffolds, the amniotic membrane scaffolds better promoted the growth and differentiation of ADSCs. Additionally, scaffolds containing the PRP and amniotic membrane efficiently enhanced the osteogenic differentiation of ADSCs. The levels of COL1A1, COL2A1, COL10A1, SOX9, and ACAN in ADSCs + amniotic membrane + PRP group were significantly higher than the other groups both in vitro and in vivo. The Wakitani scores of the ADSC + amniotic membrane + PRP group were lower than that in ADSC + PRP (4.4 +/- 0.44**), ADSC + amniotic membrane (2.63 +/- 0.38**), and control groups (6.733 +/- 0.21) at week 12 post-operation. Osteogenesis in rabbits of the ADSC + amniotic membrane + PRP group was significantly upregulated when compared with other groups. Amniotic membranes significantly promoted the expression of cartilage regeneration-related factors (SOX6, SOX9, RUNX2, NKX3-2, MEF2C, and GATA4). The ADSC + PRP + amniotic membrane group exhibited the highest levels of TGF-beta, PDGF, and FGF while exhibiting the lowest level of IL-1 beta, IL6, and TNF-alpha in articular cavity.Conclusion: Amniotic membrane/collagen combination-based scaffolds promoted the proliferation and cartilage differentiation of ADSCs, and may provide a new treatment paradigm for patients with cartilage injury.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] The Positive Effect of TET2 on the Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells
    Feng, Li
    Zhou, Jing
    Xia, Bo
    Tian, Bao-Fang
    CELLULAR REPROGRAMMING, 2020, 22 (01) : 3 - 13
  • [42] Cytotoxicity of local anesthetics on rabbit adipose-derived mesenchymal stem cells during early chondrogenic differentiation
    Wu, Tao
    Shi, Zhaohong
    Song, Haixin
    Li, Yangzheng
    Li, Jian-Hua
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2018, 16 (04) : 2843 - 2850
  • [43] Proliferation and chondrogenic differentiation of human adipose-derived mesenchymal stem cells in porous hyaluronic acid scaffold
    Yoon, In-Soo
    Chung, Chung Wook
    Sung, Jong-Hyuk
    Cho, Hyun-Jong
    Kim, Jung Sun
    Shim, Won-Sik
    Shim, Chang-Koo
    Chung, Suk-Jae
    Kim, Dae-Duk
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2011, 112 (04) : 402 - 408
  • [44] Chondrogenic differentiation of human scalp adipose-derived stem cells in Polycaprolactone scaffold and using Freeze Thaw Freeze method
    Tehrani, Rana Moradian
    Mirzaei, Hamed
    Verdi, Javad
    Sahebkar, Amirhossein
    Noureddini, Mahdi
    Salehi, Rasoul
    Alani, Behrang
    Kianmehr, Mojtaba
    JOURNAL OF CELLULAR PHYSIOLOGY, 2018, 233 (10) : 6705 - 6713
  • [45] The impact of photobiomodulation on the chondrogenic potential of adipose-derived stromal/stem cells
    Schneider, C.
    Dungel, P.
    Priglinger, E.
    Danzer, M.
    Schadl, B.
    Nurnberger, S.
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 2021, 221
  • [46] Inactivation of Wnt/β-catenin signaling in human adipose-derived stem cells is necessary for chondrogenic differentiation and maintenance
    Luo, Simin
    Shi, Qiping
    Zha, Zhengang
    Yao, Ping
    Lin, Hongsheng
    Liu, Ning
    Wu, Hao
    Sun, Shangyun
    BIOMEDICINE & PHARMACOTHERAPY, 2013, 67 (08) : 819 - 824
  • [47] The Effect of Age on Human Adipose-Derived Stem Cells
    Wu, Wei
    Niklason, Laura
    Steinbacher, Derek M.
    PLASTIC AND RECONSTRUCTIVE SURGERY, 2013, 131 (01) : 27 - 37
  • [48] Applications of Stem Cell Therapy and Adipose-Derived Stem Cells for Skin Repair
    Ali, Araiz
    Gupta, Jeena
    CURRENT DERMATOLOGY REPORTS, 2022, 11 (02) : 120 - 130
  • [49] Enhancement of the chondrogenic differentiation of mesenchymal stem cells and cartilage repair by ghrelin
    Fan, Litong
    Chen, Jiaqing
    Tao, Yanmeng
    Heng, Boon Chin
    Yu, Jiakuo
    Yang, Zheng
    Ge, Zigang
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2019, 37 (06) : 1387 - 1397
  • [50] Adipose-derived stem cells for wound repair and regeneration
    Shingyochi, Yoshiaki
    Orbay, Hakan
    Mizunot, Hiroshi
    EXPERT OPINION ON BIOLOGICAL THERAPY, 2015, 15 (09) : 1285 - 1292