Effect of Amniotic Membrane/Collagen-Based Scaffolds on the Chondrogenic Differentiation of Adipose-Derived Stem Cells and Cartilage Repair

被引:11
|
作者
Cao, Le [1 ,2 ,3 ]
Tong, Yuling [4 ]
Wang, Xiao [5 ]
Zhang, Qiang [1 ,2 ,3 ]
Qi, Yiying [1 ,2 ,3 ]
Zhou, Chenhe [1 ,2 ,3 ]
Yu, Xinning [1 ,2 ,3 ]
Wu, Yongping [1 ,2 ,3 ]
Miao, Xudong [1 ,2 ,3 ]
机构
[1] Zhejiang Univ, Affiliated Hosp 2, Dept Orthped Surg, Sch Med, Hangzhou, Peoples R China
[2] Zhejiang Univ, Orthped Res Inst, Hangzhou, Peoples R China
[3] Key Lab Motor Syst Dis Res & Precis Therapy Zheji, Hangzhou, Peoples R China
[4] Zhejiang Univ, Affiliated Hosp 2, Dept Gen Practice, Sch Med, Hangzhou, Peoples R China
[5] Shaoxing Shangyu Hosp Tradit Chinese Med, Shaoxing, Peoples R China
来源
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY | 2021年 / 9卷
关键词
ADSCs; PRP; amniotic membrane; stent; knee joint; II COLLAGEN; EXPRESSION; MEMBRANE; TISSUE; CHONDROCYTES; GENE;
D O I
10.3389/fcell.2021.647166
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Objectives: Repairing articular cartilage damage is challenging. Clinically, tissue engineering technology is used to induce stem cell differentiation and proliferation on biological scaffolds to repair defective joints. However, no ideal biological scaffolds have been identified. This study investigated the effects of amniotic membrane/collagen scaffolds on the differentiation of adipose-derived stem cells (ADSCs) and articular cartilage repair.Methods: Adipose tissue of New Zealand rabbits was excised, and ADSCs were isolated and induced for differentiation. An articular cartilage defect model was constructed to identify the effect of amniotic membrane/collagen scaffolds on cartilage repair. Cartilage formation was analyzed by imaging and toluene blue staining. Knee joint recovery in rabbits was examined using hematoxylin and eosin, toluidine, safranine, and immunohistochemistry at 12 weeks post-operation. Gene expression was examined using ELISA, RT-PCR, Western blotting, and immunofluorescence.Results: The adipose tissue was effectively differentiated into ADSCs, which further differentiated into chondrogenic, osteogenic, and lipogenic lineages after 3 weeks' culture in vitro. Compared with platelet-rich plasmon (PRP) scaffolds, the amniotic membrane scaffolds better promoted the growth and differentiation of ADSCs. Additionally, scaffolds containing the PRP and amniotic membrane efficiently enhanced the osteogenic differentiation of ADSCs. The levels of COL1A1, COL2A1, COL10A1, SOX9, and ACAN in ADSCs + amniotic membrane + PRP group were significantly higher than the other groups both in vitro and in vivo. The Wakitani scores of the ADSC + amniotic membrane + PRP group were lower than that in ADSC + PRP (4.4 +/- 0.44**), ADSC + amniotic membrane (2.63 +/- 0.38**), and control groups (6.733 +/- 0.21) at week 12 post-operation. Osteogenesis in rabbits of the ADSC + amniotic membrane + PRP group was significantly upregulated when compared with other groups. Amniotic membranes significantly promoted the expression of cartilage regeneration-related factors (SOX6, SOX9, RUNX2, NKX3-2, MEF2C, and GATA4). The ADSC + PRP + amniotic membrane group exhibited the highest levels of TGF-beta, PDGF, and FGF while exhibiting the lowest level of IL-1 beta, IL6, and TNF-alpha in articular cavity.Conclusion: Amniotic membrane/collagen combination-based scaffolds promoted the proliferation and cartilage differentiation of ADSCs, and may provide a new treatment paradigm for patients with cartilage injury.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Endothelial differentiation of diabetic adipose-derived stem cells
    Policha, Aleksandra
    Zhang, Ping
    Chang, Lily
    Lamb, Kathleen
    Tulenko, Thomas
    DiMuzio, Paul
    JOURNAL OF SURGICAL RESEARCH, 2014, 192 (02) : 656 - 663
  • [22] PHB/PHBHHx scaffolds and human adipose-derived stem cells for cartilage tissue engineering
    Ye, Chuan
    Hu, Ping
    Ma, Min-Xian
    Xiang, Yang
    Liu, Ri-Guang
    Shang, Xian-Wen
    BIOMATERIALS, 2009, 30 (26) : 4401 - 4406
  • [23] Auricular Cartilage Regeneration with Adipose-Derived Stem Cells in Rabbits
    Oh, Se-Joon
    Park, Hee-Young
    Choi, Kyung-Un
    Choi, Sung-Won
    Kim, Sung-Dong
    Kong, Soo-Keun
    Cho, Kyu-Sup
    MEDIATORS OF INFLAMMATION, 2018, 2018
  • [24] Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype
    Estes, Bradley T.
    Diekman, Brian O.
    Gimble, Jeffrey M.
    Guilak, Farshid
    NATURE PROTOCOLS, 2010, 5 (07) : 1294 - 1311
  • [25] The effects of synthetic and natural scaffolds on viability and proliferation of adipose-derived stem cells
    Ghiasi, Mahdieh
    Kalhor, Naser
    Qomi, Reza Tabatabaei
    Sheykhhasan, Mohsen
    FRONTIERS IN LIFE SCIENCE, 2016, 9 (01): : 32 - 43
  • [26] Enhancement of Matrix Metalloproteinase-2 (MMP-2) as a Potential Chondrogenic Marker during Chondrogenic Differentiation of Human Adipose-Derived Stem Cells
    Arai, Yoshie
    Park, Sunghyun
    Choi, Bogyu
    Ko, Kyoung-Won
    Choi, Won Chul
    Lee, Joong-Myung
    Han, Dong-Wook
    Park, Hun-Kuk
    Han, Inbo
    Lee, Jong Hun
    Lee, Soo-Hong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (06):
  • [27] Chondrogenic differentiation of amniotic fluid-derived stem cells
    Kolambkar, Yash M.
    Peister, Alexandra
    Soker, Shay
    Atala, Anthony
    Guldberg, Robert E.
    JOURNAL OF MOLECULAR HISTOLOGY, 2007, 38 (05) : 405 - 413
  • [28] Chondrogenic Differentiation of Human Adipose Tissue-Derived Stem Cells in Functional PLGA Scaffolds
    Park, Jae Gu
    Lee, Jung Ho
    Kim, Jeong Nam
    Kang, Jo A.
    Kim, Ki Joo
    Park, Kwi Deok
    Han, Dong Keun
    Ahn, Sang Tae
    Rhie, Jong Won
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2011, 8 (01) : 47 - 54
  • [29] The differentiation of rat adipose-derived stem cells into OEC-like cells on collagen scaffolds by co-culturing with OECs
    Wang, Bin
    Han, Jin
    Gao, Yuan
    Xiao, Zhifeng
    Chen, Bing
    Wang, Xia
    Zhao, Wenxue
    Dai, Jianwu
    NEUROSCIENCE LETTERS, 2007, 421 (03) : 191 - 196
  • [30] In vitro study on chondrogenic differentiation of human adipose-derived stem cells on treated bovine pericardium
    My Thi Ngoc Nguyen
    Vu Nguyen Doan
    Ha Le Bao Tran
    TURKISH JOURNAL OF BIOLOGY, 2019, 43 (06) : 360 - 370