Environmentally benign synthesis of a PGM-free catalyst for low temperature CO oxidation

被引:21
|
作者
Riley, Christopher [1 ,2 ]
Canning, Griffin [1 ,2 ]
De La Riva, Andrew [1 ,2 ]
Zhou, Shulan [3 ,4 ]
Peterson, Eric [1 ,2 ]
Boubnov, Alexey [5 ]
Hoffman, Adam [5 ]
Minh Tran [1 ,2 ]
Bare, Simon R. [5 ]
Lin, Sen [3 ,6 ]
Guo, Hua [3 ]
Datye, Abhaya [1 ,2 ]
机构
[1] Univ New Mexico, Dept Chem & Biol Engn, Albuquerque, NM 87131 USA
[2] Univ New Mexico, Ctr Microengineered Mat, Albuquerque, NM 87131 USA
[3] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA
[4] Jingdezhen Ceram Inst, Dept Mat Sci & Engn, Jingdezhen 333403, Peoples R China
[5] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA
[6] Fuzhou Univ, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350002, Peoples R China
关键词
Dopant; Ceria; CO oxidation; Polyvinylpyrrolidone; Sol-gel synthesis; DENSITY-FUNCTIONAL THEORY; TOTAL-ENERGY CALCULATIONS; DOPED CERIA CATALYSTS; GAS SHIFT REACTION; HYDROTHERMAL SYNTHESIS; CEO2; SOLIDS; NICKEL; OXIDE; NI;
D O I
10.1016/j.apcatb.2019.118547
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dopants enhance the catalytic properties of ceria. However, conventional techniques for synthesizing doped ceria have limitations in terms of structural homogeneity, surface area, and catalytic activity of the resulting oxide. Use of toxic and corrosive chemicals presents further challenges. The sol-gel method described in this work provides a facile approach for incorporating high concentrations of dopants in a uniform, high surface area structure, yielding excellent catalytic activity. Addition of polyvinylpyrrolidone (PVP) complexing agent prevents the segregation of cerium and dopant atoms during synthesis. Surface areas up to 179 m(2)/g are achieved, which represents a substantial improvement over doped ceria produced through coprecipitation, solution combustion, or melt-synthesis methods. The resulting powders exhibit dramatically improved CO oxidation activity (T-90 = 132 degrees C for 3.2 wt% Cu-CeO2 compared to 274 degrees C for a 2 wt% Pt-Al2O3 reference catalyst). First principles calculations suggest a Mars Van Krevelen mechanism, which is facilitated by dopants causing oxygen vacancies.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] PGM-free metal oxide nanoarray forests for water-promoted low-temperature soot oxidation
    Zhu, Chunxiang
    Du, Shoucheng
    Wang, Sibo
    Lu, Xingxu
    Zhang, Mingwan
    Zhang, Bo
    Liu, Fangyuan
    Xiao, Wen
    Guo, Yanbing
    Ding, Jun
    Zhang, Zhaoliang
    Gao, Pu-Xian
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2024, 341
  • [2] 3D ZnO/Perovskite core/shell nanorod array based catalysts: A promising PGM-free catalyst for low temperature hydrocarbons oxidation
    Wang, Sibo
    Ren, Zheng
    Guo, Yanbing
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [3] The emerging coupled low-PGM and PGM-free catalysts for oxygen reduction reaction
    Zhou, Yangdong
    Wang, Ning
    Xing, Lixin
    Zhang, Xiting
    Zhong, Ruyi
    Peng, Yuqin
    Chen, Yue
    Ye, Siyu
    Xie, Xiaohong
    Du, Lei
    CHEM CATALYSIS, 2023, 3 (02):
  • [4] Influence of Commercial Ionomers and Membranes on a PGM-Free Catalyst in the Alkaline Oxygen Reduction
    Kellner, Simon
    Liu, Ziyang
    D'Acierno, Francesco
    Pedersen, Angus
    Barrio, Jesus
    Heutz, Sandrine
    Stephens, Ifan E. L.
    Favero, Silvia
    Titirici, Maria-Magdalena
    ACS APPLIED ENERGY MATERIALS, 2025, 8 (06): : 3470 - 3480
  • [5] Design of PGM-free cathodic catalyst layers for advanced PEM fuel cells
    Reshetenko, Tatyana
    Odgaard, Madeleine
    Randolf, Guenter
    Ohtaki, Kenta K.
    Bradley, John P.
    Zulevi, Barr
    Lyu, Xiang
    Cullen, David A.
    Jafta, Charl J.
    Serov, Alexey
    Kulikovsky, Andrei
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 312
  • [6] Design of PGM-Free Cathode Catalyst Layers for PEMFC Applications: The Impact of Electronic Conductivity
    Li, Yan-Sheng
    Menga, Davide
    Gasteiger, Hubert A.
    Suthar, Bharatkumar
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (09)
  • [7] ElectroCat: DOE's approach to PGM-free catalyst and electrode R&D
    Thompson, Simon T.
    Wilson, Adria R.
    Zelenay, Piotr
    Myers, Deborah J.
    More, Karren L.
    Neyerlin, K. C.
    Papageorgopoulos, Dimitrios
    SOLID STATE IONICS, 2018, 319 : 68 - 76
  • [8] Water management strategies for PGM-free catalyst layers for polymer electrolyte fuel cells
    Satjaritanun, Pongsarun
    Zenyuk, Iryna, V
    CURRENT OPINION IN ELECTROCHEMISTRY, 2021, 25
  • [9] A PGM-free NOx adsorber plus selective catalytic reduction catalyst system (AdSCR) for trapping and reducing NOx in lean exhaust streams at low temperature
    Selleri, Tommaso
    Gramigni, Federica
    Nova, Isabella
    Tronconi, Enrico
    Dieterich, Simone
    Weibel, Michel
    Schmeisser, Volker
    CATALYSIS SCIENCE & TECHNOLOGY, 2018, 8 (09) : 2467 - 2476
  • [10] Loading Impact of a PGM-Free Catalyst on the Mass Activity in Proton Exchange Membrane Fuel Cells
    Damjanovic, Ana Marija
    Koyutuek, Burak
    Li, Yan-Sheng
    Menga, Davide
    Eickes, Christian
    El-Sayed, Hany A.
    Gasteiger, Hubert A.
    Fellinger, Tim-Patrick
    Piana, Michele
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (11)