Rayleigh wave propagation in nonlinear metasurfaces

被引:40
作者
Palermo, A. [1 ]
Yousefzadeh, B. [2 ]
Daraio, C. [3 ]
Marzani, A. [1 ]
机构
[1] Univ Bologna, Dept Civil Chem Environm & Mat Engn, I-40136 Bologna, Italy
[2] Concordia Univ, Dept Mech Ind & Aerosp Engn, Montreal, PQ H3G 1M8, Canada
[3] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
基金
欧盟地平线“2020”;
关键词
Rayleigh waves; Nonlinear metasurfaces; Elastic metamaterials; Nonlinear dispersion; Damped waves propagation;
D O I
10.1016/j.jsv.2021.116599
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We investigate the propagation of Rayleigh waves in a half-space coupled to a nonlinear metasurface. The metasurface consists of an array of nonlinear oscillators attached to the free surface of a homogeneous substrate. We describe, analytically and numerically, the effects of nonlinear interaction force and energy loss on the dispersion of Rayleigh waves. We develop closed-form expressions to predict the dispersive characteristics of nonlinear Rayleigh waves by adopting a leading-order effective medium description. In particular, we demonstrate how hardening nonlinearity reduces and eventually eliminates the linear filtering bandwidth of the metasurface. Softening nonlinearity, in contrast, induces lower and broader spectral gaps for weak to moderate strengths of nonlinearity, and narrows and eventually closes the gaps at high strengths of nonlinearity. We also observe the emergence of a spatial gap (in wavenumber) in the in-phase branch of the dispersion curves for softening nonlinearity. Finally, we investigate the interplay between nonlinearity and energy loss and discuss their combined effects on the dispersive properties of the metasurface. Our analytical results, supported by finite element simulations, demonstrate the mechanisms for achieving tunable dispersion characteristics in nonlinear metasurfaces.
引用
收藏
页数:14
相关论文
共 46 条
[1]   Subwavelength waveguiding of surface phonons in pillars-based phononic crystal [J].
Addouche, Mahmoud ;
Al-Lethawe, Mohammed A. ;
Elayouch, Aliyasin ;
Khelif, Abdelkrim .
AIP ADVANCES, 2014, 4 (12)
[2]   Analysis of Phononic Bandgap Structures With Dissipation [J].
Andreassen, Erik ;
Jensen, Jakob S. .
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2013, 135 (04)
[3]   Acoustic metasurfaces [J].
Assouar, Badreddine ;
Liang, Bin ;
Wu, Ying ;
Li, Yong ;
Cheng, Jian-Chun ;
Jing, Yun .
NATURE REVIEWS MATERIALS, 2018, 3 (12) :460-472
[4]  
Benchabane S., 2019, Fundamentals and Applications of Acoustic Metamaterials: From Seismic to Radio Frequency, V1, P207
[5]   Interaction of a Contact Resonance of Microspheres with Surface Acoustic Waves [J].
Boechler, N. ;
Eliason, J. K. ;
Kumar, A. ;
Maznev, A. A. ;
Nelson, K. A. ;
Fang, N. .
PHYSICAL REVIEW LETTERS, 2013, 111 (03)
[6]   Past, present and future of seismic metamaterials: experiments on soil dynamics, cloaking, large scale analogue computer and space-time modulations [J].
Brule, Stephane ;
Guenneau, Sebastien .
COMPTES RENDUS PHYSIQUE, 2020, 21 (7-8) :767-785
[7]   Propagation and attenuation of Rayleigh and pseudo surface waves in viscoelastic metamaterials [J].
Cai, Runcheng ;
Jin, Yabin ;
Rabczuk, Timon ;
Zhuang, Xiaoying ;
Djafari-Rouhani, Bahram .
JOURNAL OF APPLIED PHYSICS, 2021, 129 (12)
[8]   Metamaterial beam with embedded nonlinear vibration absorbers [J].
Casalotti, Arnaldo ;
El-Borgi, Sami ;
Lacarbonara, Walter .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2018, 98 :32-42
[9]   Tailored elastic surface to body wave Umklapp conversion [J].
Chaplain, Gregory J. ;
De Ponti, Jacopo M. ;
Colombi, Andrea ;
Fuentes-Dominguez, Rafael ;
Dryburg, Paul ;
Pieris, Don ;
Smith, Richard J. ;
Clare, Adam ;
Clark, Matt ;
Craster, Richard, V .
NATURE COMMUNICATIONS, 2020, 11 (01)
[10]   A seismic metamaterial: The resonant metawedge [J].
Colombi, Andrea ;
Colquitt, Daniel ;
Roux, Philippe ;
Guenneau, Sebastien ;
Craster, Richard V. .
SCIENTIFIC REPORTS, 2016, 6