Smectic polymer micellar aggregates with temperature-controlled morphologies

被引:74
|
作者
Jia, Lin [2 ]
Levy, Daniel [2 ]
Durand, Dominique [3 ]
Imperor-Clerc, Marianne [4 ]
Cao, Amin [1 ]
Li, Min-Hui [2 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Organ Chem, Lab Polymer Mat, Shanghai 200032, Peoples R China
[2] Univ Pierre Marie Curie, Inst Curie, CNRS, Lab Physicochim Curie,UMR168, F-75248 Paris 05, France
[3] Univ Paris 11, CNRS, Inst Biochim & Biophys Mol & Cellulaire, UMR 8619, F-91405 Orsay, France
[4] Univ Paris 11, CNRS, Lab Phys Solides, UMR8502, F-91405 Orsay, France
关键词
BLOCK-COPOLYMERS; MULTIPLE MORPHOLOGIES; CYLINDRICAL MICELLES; DIBLOCK COPOLYMERS; LIPID NANOTUBES; DILUTE-SOLUTION; VESICLES; ORDER; WATER; PCL;
D O I
10.1039/c1sm05636k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The morphological control of polymer micellar aggregates is a very important issue in applications such as drug delivery and material science. We report the temperature-controlled formation of nanotubes, nanofibers, ellipsoidal and faceted vesicles, and spherical aggregates by nanoprecipitation of amphiphilic diblock copolymers in dioxane/water mixture. The copolymers used are composed of a cholesterol-based smectic liquid crystal core-forming block and a PEG hydrophilic block. The morphology of the micellar self-assemblies was studied by transmission electron microscopy (TEM), cryo-electron microscopy (cryo-TEM) and atomic force microscopy (AFM). In all these aggregates smectic organization is clearly present in the hydrophobic cores. We propose a smectic "liquid crystallization"-driven self-assembly process for the formation of nanofibers and nanotubes on the basis of small angle X-ray scattering (SAXS) studies during the nanoprecipitation. The temperature dependence of the morphology (from T = 5-55 degrees C) is explained by the free energy consideration. The different aggregates finally dispersed in water after the removal of dioxane are thermally stable at temperature <= 55 degrees C and can be preserved for years at room temperature without structural change.
引用
收藏
页码:7395 / 7403
页数:9
相关论文
共 50 条
  • [41] Temperature-controlled synthesis of MgO nanorods
    Kim, Hyoun Woo
    Shim, Seung Hyun
    Lee, Chongmu
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2006, 49 (02) : 628 - 631
  • [42] Characterization of a temperature-controlled FAIMS system
    Barnett, David A.
    Belford, Michael
    Dunyach, Jean-Jacques
    Purves, Randy W.
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2007, 18 (09) : 1653 - 1663
  • [43] PRECISION TEMPERATURE-CONTROLLED WATER BATH
    HARVEY, ME
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1968, 39 (01): : 13 - &
  • [44] A PLASMID VECTOR FOR TEMPERATURE-CONTROLLED EXPRESSION
    KRAVCHENKO, VV
    YAMSHCHIKOV, VF
    PLETNEV, AG
    BIOORGANICHESKAYA KHIMIYA, 1985, 11 (04): : 523 - 533
  • [45] A TEMPERATURE-CONTROLLED RESISTANCE FURNACE FOR HIGH TEMPERATURE MEASUREMENTS
    SCHNEIDER, WG
    HOLLIES, NRS
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1950, 21 (01): : 94 - 95
  • [46] Temperature-controlled radiofrequency current ablation - What temperature?
    Schluter, M
    Kuck, KH
    EUROPEAN HEART JOURNAL, 1996, 17 (03) : 327 - 329
  • [47] Physicochemical Study of Bile Salt-Polymer Micellar Aggregates
    Dey, Tania
    Das, Akhil R.
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2012, 226 (04): : 315 - 326
  • [48] Temporal evolution of micellar aggregates in the temperature jump experiments
    de Moraes, J. N. B.
    Figueiredo, W.
    CHEMICAL PHYSICS LETTERS, 2010, 491 (1-3) : 39 - 43
  • [49] Temperature-controlled dripping-onto-substrate (DoS) extensional rheometry of polymer micelle solutions
    Zhang, Diana Y.
    Calabrese, Michelle A.
    SOFT MATTER, 2022, 18 (20) : 3993 - 4008
  • [50] Reversible temperature-controlled gelation in mixtures of pNIPAM microgels and non-ionic polymer surfactant
    Fussell, S. L.
    Bayliss, K.
    Coops, C.
    Matthews, L.
    Li, W.
    Briscoe, W. H.
    Faers, M. A.
    Royall, C. P.
    van Duijneveldt, J. S.
    SOFT MATTER, 2019, 15 (42) : 8578 - 8588