An LDG Method for Stochastic Cahn-Hilliard Type Equation Driven by General Multiplicative Noise Involving Second-Order Derivative

被引:5
作者
Zhou, Li [1 ]
Li, Yunzhang [2 ]
机构
[1] Fudan Univ, Sch Math Sci, Dept Computat Math, Shanghai 200433, Peoples R China
[2] Fudan Univ, Sch Math Sci, Dept Finance & Control Sci, Shanghai 200433, Peoples R China
基金
中国博士后科学基金;
关键词
Local discontinuous Galerkin method; stochastic Cahn-Hilliard type equations; multiplicative noise; stability analysis; error estimates; DISCONTINUOUS GALERKIN METHOD; FINITE-ELEMENT-METHOD; CONSERVATION-LAWS;
D O I
10.4208/cicp.OA-2021-0134
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we propose a local discontinuous Galerkin (LDG) method for the multi-dimensional stochastic Cahn-Hilliard type equation in a general form, which involves second-order derivative Delta u in the multiplicative noise. The stability of our scheme is proved for arbitrary polygonal domain with triangular meshes. We get the sub-optimal error estimate O(h(k)) if the Cartesian meshes with Q(k) elements are used. Numerical examples are given to display the performance of the LDG method.
引用
收藏
页码:516 / 547
页数:32
相关论文
共 26 条
[1]  
[Anonymous], 1979, Current problems in mathematics
[2]   A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations [J].
Bassi, F ;
Rebay, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (02) :267-279
[3]   ON SPINODAL DECOMPOSITION [J].
CAHN, JW .
ACTA METALLURGICA, 1961, 9 (09) :795-801
[4]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[5]   Cahn-Hilliard stochastic equation: existence of the solution and of its density [J].
Cardon-Weber, C .
BERNOULLI, 2001, 7 (05) :777-816
[6]  
Castillo P, 2002, MATH COMPUT, V71, P455, DOI 10.1090/S0025-5718-01-01317-5
[7]  
Ciarlet Philippe G, 2002, FINITE ELEMENT METHO
[8]   The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J].
Cockburn, B ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2440-2463
[9]   The Runge-Kutta discontinuous Galerkin method for conservation laws V - Multidimensional systems [J].
Cockburn, B ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 141 (02) :199-224
[10]   TVB RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .2. GENERAL FRAMEWORK [J].
COCKBURN, B ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :411-435