Tissue culture and Agrobacterium-mediated transformation of hemp (Cannabis sativa L.)

被引:65
|
作者
Feeney, M [1 ]
Punja, ZK [1 ]
机构
[1] Simon Fraser Univ, Dept Biol Sci, Ctr Environm Biol, Burnaby, BC V5A 1S6, Canada
关键词
callus; suspension culture; Agrobacterium tumefaciens; mannose selection; phosphomannose isomerase; regeneration; transgenic hemp;
D O I
10.1079/IVP2003454
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Hemp (Cannabis sativa L.) is cultivated in many parts of the world for its fiber, oil, and seed. The development of new hemp cultivars with improved traits could be facilitated through the application of biotechnological strategies. The purpose of this study was to investigate the propagation of hemp in tissue culture and to establish a protocol for Agrobacterium-mediated transformation for foreign gene introduction. Stem and leaf segments from seedlings of four hemp varieties were placed on Murashige and Skoog medium with Gamborg B5 vitamins (MB) supplemented with 5 muM 2,4-dichlorophenoxyacetic acid (2,4-D) and 1 muM kinetin, 3% sucrose, and 8 g l(-1) agar. Large masses of callus were produced within 4 wk for all cultivars. Suspension cultures were established in MB medium containing 2.5 muM 2,4-D. To promote embryogenesis or organogenesis, explants, callus, and suspension cultures derived from a range of explant sources and seedling ages were exposed to variations in the culture medium and changes to the culture environment. None of the treatments tested were successful in promoting plantlet regeneration. Suspension cells were transformed with Agrobacterium tumefaciens strain EHA101 carrying the binary vector pNOV3635 with a gene encoding phosphomannose isomerase (PMI). Transformed callus was selected on medium containing 1-2% mannose. A chlorophenol red assay was used to confirm that the PMI gene was expressed. Polymerase chain reaction and Southern hybridization detected the presence of the PMI gene. Copy number in different lines ranged from one to four.
引用
收藏
页码:578 / 585
页数:8
相关论文
共 50 条
  • [41] Agrobacterium-mediated genetic transformation of radish (Raphanus sativus L.)
    Cho, Mi Ae
    Min, Sung Ran
    Ko, Suk Min
    Liu, Jang Ryol
    Choi, Pil Son
    PLANT BIOTECHNOLOGY, 2008, 25 (02) : 205 - 208
  • [42] Agrobacterium-mediated genetic transformation of safflower (Carthamus tinctorius L.)
    Shilpa, K. Sri
    Kumar, V. Dinesh
    Sujatha, M.
    PLANT CELL TISSUE AND ORGAN CULTURE, 2010, 103 (03) : 387 - 401
  • [43] An improved protocol for Agrobacterium-mediated transformation of Antirrhinum majus L.
    M.-L. Cui
    T. Handa
    H. Ezura
    Molecular Genetics and Genomics, 2003, 270 : 296 - 302
  • [44] An improved protocol for Agrobacterium-mediated transformation of Antirrhinum majus L.
    Cui, ML
    Handa, T
    Ezura, H
    MOLECULAR GENETICS AND GENOMICS, 2003, 270 (04) : 296 - 302
  • [45] Agrobacterium-mediated genetic transformation in cucumber (Cucumis sativus L.)
    Vasudevan, A.
    Selvaraj, N.
    Ganapathi, A.
    Choi, C.W.
    American Journal of Biochemistry and Biotechnology, 2007, 3 (01): : 24 - 32
  • [46] Agrobacterium-mediated transformation and plant regeneration of Triticum aestivum L.
    Mitic, N
    Nikolic, R
    Ninkovic, S
    Miljus-Djukic, J
    Neskovic, M
    BIOLOGIA PLANTARUM, 2004, 48 (02) : 179 - 184
  • [47] Agrobacterium-mediated genetic transformation of safflower (Carthamus tinctorius L.)
    K. Sri Shilpa
    V. Dinesh Kumar
    M. Sujatha
    Plant Cell, Tissue and Organ Culture (PCTOC), 2010, 103 : 387 - 401
  • [48] Somatic embryogenesis and Agrobacterium-mediated transformation in Bixa orellana L.
    Parimalan, Rangan
    Venugopalan, Akshatha
    Giridhar, Parvatam
    Ravishankar, G. A.
    PLANT CELL TISSUE AND ORGAN CULTURE, 2011, 105 (03) : 317 - 328
  • [49] Agrobacterium-mediated stable transformation of barley (Hordeum vulgare L.)
    Wu, H
    McCormac, AC
    Elliott, MC
    Chen, DF
    PLANT BIOTECHNOLOGY AND IN VITRO BIOLOGY IN THE 21ST CENTURY, 1999, 36 : 231 - 234
  • [50] Regeneration and Agrobacterium-mediated transformation of hop (Humulus lupulus L.)
    Horlemann, C
    Schwekendiek, A
    Höhnle, M
    Weber, G
    PLANT CELL REPORTS, 2003, 22 (03) : 210 - 217