Semi-Lagrangian lattice Boltzmann method for compressible flows

被引:36
|
作者
Wilde, Dominik [1 ,2 ]
Kramer, Andreas [3 ]
Reith, Dirk [2 ,4 ]
Foysi, Holger [1 ]
机构
[1] Univ Siegen, Dept Mech Engn, Paul Bonatz Str 9-11, D-57076 Siegen, Germany
[2] Bonn Rhein Sieg Univ Appl Sci, Inst Technol Resource & Energy Efficient Engn TRE, Grantham Allee 20, D-53757 St Augustin, Germany
[3] NHLBI, NIH, Bldg 10, Bethesda, MD 20892 USA
[4] Fraunhofer Inst Algorithms & Sci Comp SCAI, D-53754 St Augustin, Germany
关键词
2-DIMENSIONAL RIEMANN PROBLEMS; GAS-DYNAMICS; MODEL; EQUATION; SIMULATIONS;
D O I
10.1103/PhysRevE.101.053306
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This work thoroughly investigates a semi-Lagrangian lattice Boltzmann (SLLBM) solver for compressible flows. In contrast to other LBM for compressible flows, the vertices are organized in cells, and interpolation polynomials up to fourth order are used to attain the off-vertex distribution function values. Differing from the recently introduced Particles on Demand (PoD) method [Dorschner, Bosch, and Karlin, Phys. Rev. Lett. 121, 30602 (2018)] , the method operates in a static, nonmoving reference frame. Yet the SLLBM in the present formulation grants supersonic flows and exhibits a high degree of Galilean invariance. The SLLBM solver allows for an independent time step size due to the integration along characteristics and for the use of unusual velocity sets, like the D2Q25, which is constructed by the roots of the fifth-order Hermite polynomial. The properties of the present model are shown in diverse example simulations of a two-dimensional Taylor-Green vortex, a Sod shock tube, a two-dimensional Riemann problem, and a shock-vortex interaction. It is shown that the cell-based interpolation and the use of Gauss-Lobatto-Chebyshev support points allow for spatially high-order solutions and minimize the mass loss caused by the interpolation. Transformed grids in the shock-vortex interaction show the general applicability to nonuniform grids.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] A semi-Lagrangian splitting method for the numerical simulation of sediment transport with free surface flows
    Boyaval, Sebastien
    Caboussat, Alexandre
    Mrad, Arwa
    Picasso, Marco
    Steiner, Gilles
    COMPUTERS & FLUIDS, 2018, 172 : 384 - 396
  • [42] A curvilinear finite-volume method to solve compressible gas dynamics in semi-Lagrangian coordinates
    Del Pino, Stephane
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (17-18) : 1027 - 1032
  • [43] A second-order semi-Lagrangian particle finite element method for fluid flows
    Jonathan Colom-Cobb
    Julio Garcia-Espinosa
    Borja Servan-Camas
    P. Nadukandi
    Computational Particle Mechanics, 2020, 7 : 3 - 18
  • [44] A semi-Lagrangian deterministic solver for the semiconductor Boltzmann-Poisson system
    Carrillo, Jose A.
    Majorana, Armando
    Vecil, Francesco
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2007, 2 (05) : 1027 - 1054
  • [45] A semi-Lagrangian contouring method for fluid simulation
    Bargteil, AW
    Goktekin, TG
    O'Brien, JF
    Strain, JA
    ACM TRANSACTIONS ON GRAPHICS, 2006, 25 (01): : 19 - 38
  • [46] Lattice Boltzmann method for simulation of weakly compressible flows at arbitrary Prandtl number
    Praslanakis, N. I.
    Boulouchos, K. B.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (04): : 602 - 609
  • [47] Arbitrary Lagrangian-Eulerian formulation of lattice Boltzmann model for compressible flows on unstructured moving meshes
    Saadat, M. H.
    Karlin, I. V.
    PHYSICS OF FLUIDS, 2020, 32 (04)
  • [48] Triangular metric-based mesh adaptation for compressible multi-material flows in semi-Lagrangian coordinates
    Del Pino, Stephane
    Marmajou, Isabelle
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 478
  • [49] High-order semi-Lagrangian kinetic scheme for compressible turbulence
    Wilde, Dominik
    Kraemer, Andreas
    Reith, Dirk
    Foysi, Holger
    PHYSICAL REVIEW E, 2021, 104 (02)
  • [50] A second-order semi-Lagrangian particle finite element method for fluid flows
    Colom-Cobb, Jonathan
    Garcia-Espinosa, Julio
    Servan-Camas, Borja
    Nadukandi, P.
    COMPUTATIONAL PARTICLE MECHANICS, 2020, 7 (01) : 3 - 18