Semi-Lagrangian lattice Boltzmann method for compressible flows

被引:37
|
作者
Wilde, Dominik [1 ,2 ]
Kramer, Andreas [3 ]
Reith, Dirk [2 ,4 ]
Foysi, Holger [1 ]
机构
[1] Univ Siegen, Dept Mech Engn, Paul Bonatz Str 9-11, D-57076 Siegen, Germany
[2] Bonn Rhein Sieg Univ Appl Sci, Inst Technol Resource & Energy Efficient Engn TRE, Grantham Allee 20, D-53757 St Augustin, Germany
[3] NHLBI, NIH, Bldg 10, Bethesda, MD 20892 USA
[4] Fraunhofer Inst Algorithms & Sci Comp SCAI, D-53754 St Augustin, Germany
关键词
2-DIMENSIONAL RIEMANN PROBLEMS; GAS-DYNAMICS; MODEL; EQUATION; SIMULATIONS;
D O I
10.1103/PhysRevE.101.053306
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This work thoroughly investigates a semi-Lagrangian lattice Boltzmann (SLLBM) solver for compressible flows. In contrast to other LBM for compressible flows, the vertices are organized in cells, and interpolation polynomials up to fourth order are used to attain the off-vertex distribution function values. Differing from the recently introduced Particles on Demand (PoD) method [Dorschner, Bosch, and Karlin, Phys. Rev. Lett. 121, 30602 (2018)] , the method operates in a static, nonmoving reference frame. Yet the SLLBM in the present formulation grants supersonic flows and exhibits a high degree of Galilean invariance. The SLLBM solver allows for an independent time step size due to the integration along characteristics and for the use of unusual velocity sets, like the D2Q25, which is constructed by the roots of the fifth-order Hermite polynomial. The properties of the present model are shown in diverse example simulations of a two-dimensional Taylor-Green vortex, a Sod shock tube, a two-dimensional Riemann problem, and a shock-vortex interaction. It is shown that the cell-based interpolation and the use of Gauss-Lobatto-Chebyshev support points allow for spatially high-order solutions and minimize the mass loss caused by the interpolation. Transformed grids in the shock-vortex interaction show the general applicability to nonuniform grids.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] High-order semi-Lagrangian kinetic scheme for compressible turbulence
    Wilde, Dominik
    Kraemer, Andreas
    Reith, Dirk
    Foysi, Holger
    PHYSICAL REVIEW E, 2021, 104 (02)
  • [22] Compressible Lattice Boltzmann Method and Applications
    Feng, Weibing
    He, Bing
    Song, Anping
    Wang, Yang
    Zhang, Miao
    Zhang, Wu
    HIGH PERFORMANCE COMPUTING AND APPLICATIONS, 2010, 5938 : 17 - +
  • [23] COMPRESSIBLE LATTICE BOLTZMANN METHOD AND APPLICATIONS
    He, Bing
    Chen, Yingchun
    Feng, Weibing
    Li, Qing
    Song, Anping
    Wang, Yang
    Zhang, Miao
    Zhang, Wu
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2012, 9 (02) : 410 - 418
  • [24] Semi-Lagrangian implicit Bhatnagar-Gross-Krook collision model for the finite-volume discrete Boltzmann method
    Chen, Leitao
    Succi, Sauro
    Cai, Xiaofeng
    Schaefer, Laura
    PHYSICAL REVIEW E, 2020, 101 (06)
  • [25] On the lattice Boltzmann method for multiphase flows with large density ratios
    Kim, Seung Hyun
    Pitsch, Heinz
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 303 : 19 - 27
  • [26] A spectral difference lattice Boltzmann method for solution of inviscid compressible flows on structured grids
    Hejranfar, Kazem
    Ghaffarian, Ali
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (05) : 1341 - 1368
  • [27] A pressure-based regularized lattice-Boltzmann method for the simulation of compressible flows
    Farag, G.
    Zhao, S.
    Coratger, T.
    Boivin, P.
    Chiavassa, G.
    Sagaut, P.
    PHYSICS OF FLUIDS, 2020, 32 (06)
  • [28] Lattice Boltzmann and Finite Volume Simulation of Inviscid Compressible Flows with Curved Boundary
    Qu, Kun
    Shu, Chang
    Chew, Yong Tian
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2010, 2 (05) : 573 - 586
  • [29] Semi-Lagrangian simulation of particle laden flows using an SPH framework
    Neethling, S. J.
    Avalos-Patino, J. E.
    Brito-Parada, P. R.
    Mesa, D.
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2025, 182
  • [30] Finite Difference Lattice Boltzmann Method for Compressible Thermal Fluids
    So, R. M. C.
    Fu, S. C.
    Leung, R. C. K.
    AIAA JOURNAL, 2010, 48 (06) : 1059 - 1071