Semi-Lagrangian lattice Boltzmann method for compressible flows

被引:37
|
作者
Wilde, Dominik [1 ,2 ]
Kramer, Andreas [3 ]
Reith, Dirk [2 ,4 ]
Foysi, Holger [1 ]
机构
[1] Univ Siegen, Dept Mech Engn, Paul Bonatz Str 9-11, D-57076 Siegen, Germany
[2] Bonn Rhein Sieg Univ Appl Sci, Inst Technol Resource & Energy Efficient Engn TRE, Grantham Allee 20, D-53757 St Augustin, Germany
[3] NHLBI, NIH, Bldg 10, Bethesda, MD 20892 USA
[4] Fraunhofer Inst Algorithms & Sci Comp SCAI, D-53754 St Augustin, Germany
关键词
2-DIMENSIONAL RIEMANN PROBLEMS; GAS-DYNAMICS; MODEL; EQUATION; SIMULATIONS;
D O I
10.1103/PhysRevE.101.053306
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This work thoroughly investigates a semi-Lagrangian lattice Boltzmann (SLLBM) solver for compressible flows. In contrast to other LBM for compressible flows, the vertices are organized in cells, and interpolation polynomials up to fourth order are used to attain the off-vertex distribution function values. Differing from the recently introduced Particles on Demand (PoD) method [Dorschner, Bosch, and Karlin, Phys. Rev. Lett. 121, 30602 (2018)] , the method operates in a static, nonmoving reference frame. Yet the SLLBM in the present formulation grants supersonic flows and exhibits a high degree of Galilean invariance. The SLLBM solver allows for an independent time step size due to the integration along characteristics and for the use of unusual velocity sets, like the D2Q25, which is constructed by the roots of the fifth-order Hermite polynomial. The properties of the present model are shown in diverse example simulations of a two-dimensional Taylor-Green vortex, a Sod shock tube, a two-dimensional Riemann problem, and a shock-vortex interaction. It is shown that the cell-based interpolation and the use of Gauss-Lobatto-Chebyshev support points allow for spatially high-order solutions and minimize the mass loss caused by the interpolation. Transformed grids in the shock-vortex interaction show the general applicability to nonuniform grids.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Semi-Lagrangian off-lattice Boltzmann method for weakly compressible flows
    Kraemer, Andreas
    Kuellmer, Knut
    Reith, Dirk
    Joppich, Wolfgang
    Foysi, Holger
    PHYSICAL REVIEW E, 2017, 95 (02)
  • [2] Semi-Lagrangian lattice Boltzmann model for compressible flows on unstructured meshes
    Saadat, M. H.
    Boesch, F.
    Karlin, I., V
    PHYSICAL REVIEW E, 2020, 101 (02)
  • [3] Multiscale semi-Lagrangian lattice Boltzmann method
    Kallikounis, N. G.
    Dorschner, B.
    Karlin, I., V
    PHYSICAL REVIEW E, 2021, 103 (06)
  • [4] A semi-Lagrangian meshfree lattice Boltzmann method for incompressible two-phase flows
    Wang, Xiaodong
    Yang, Shuai
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 524
  • [5] A mesh-free radial basis function-based semi-Lagrangian lattice Boltzmann method for incompressible flows
    Lin, Xingjian
    Wu, Jie
    Zhang, Tongwei
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2019, 91 (04) : 198 - 211
  • [6] Numerical simulation of compressible flows by lattice Boltzmann method
    Shadloo, Mostafa Safdari
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2019, 75 (03) : 167 - 182
  • [7] SLIC: A Semi-Lagrangian Implicitly Corrected method for solving the compressible Euler equations
    Zerroukat, M.
    Allen, T.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 421 (421)
  • [8] Triangular metric-based mesh adaptation for compressible multi-material flows in semi-Lagrangian coordinates
    Del Pino, Stephane
    Marmajou, Isabelle
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 478
  • [9] An adaptive time-stepping semi-Lagrangian method for incompressible flows
    Mortezazadeh, Mohammad
    Wang, Liangzhu
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2019, 75 (01) : 1 - 18
  • [10] Thermal lattice Boltzmann method for multiphase flows
    Kupershtokh, Alexander L.
    Medvedev, Dmitry A.
    Gribanov, Igor I.
    PHYSICAL REVIEW E, 2018, 98 (02)