Which metrics are consistent with a given pseudo-hermitian matrix?

被引:5
作者
Feinberg, Joshua [1 ,2 ]
Znojil, Miloslav [3 ,4 ]
机构
[1] Univ Haifa, Dept Phys, IL-31905 Haifa, Israel
[2] Univ Haifa, Haifa Res Ctr Theoret Phys & Astrophys, IL-31905 Haifa, Israel
[3] Czech Acad Sci, Nucl Phys Inst, Hlavni 130, Rez 25068, Czech Republic
[4] Durban Univ Technol, Inst Syst Sci, POB 1334, ZA-4000 Durban, South Africa
基金
以色列科学基金会;
关键词
QUANTUM-MECHANICS; PT-SYMMETRY; HAMILTONIANS; SPECTRA;
D O I
10.1063/5.0079385
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Given a diagonalizable N x N matrix H, whose non-degenerate spectrum consists of p pairs of complex conjugate eigenvalues and additional N - 2p real eigenvalues, we determine all metrics M, of all possible signatures, with respect to which H is pseudo-hermitian. In particular, we show that any compatible M must have p pairs of opposite eigenvalues in its spectrum so that p is the minimal number of both positive and negative eigenvalues of M. We provide explicit parameterization of the space of all admissible metrics and show that it is topologically a p-dimensional torus tensored with an appropriate power of the group Z(2).
引用
收藏
页数:5
相关论文
共 22 条
[1]   Non-Hermitian Hamiltonians of Lie algebraic type [J].
Assis, Paulo E. G. ;
Fring, Andreas .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (01)
[2]  
Azizov T.Y., 1989, Linear operators in spaces with an indefinite metric
[3]  
Bagarello F., 2015, NON SELFADJOINT OPER
[4]  
Bender C. M., 2019, PT Symmetry: In Quantum and Classical Physics, DOI [10.1142/q0178, DOI 10.1142/Q0178]
[5]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[6]   ON REAL EIGENVALUES OF COMPLEX MATRICES [J].
CARLSON, DH .
PACIFIC JOURNAL OF MATHEMATICS, 1965, 15 (04) :1119-&
[7]   Level statistics of a pseudo-Hermitian Dicke model [J].
Deguchi, Tetsuo ;
Ghosh, Pijush K. ;
Kudo, Kazue .
PHYSICAL REVIEW E, 2009, 80 (02)
[8]  
Dieudonne J.J., 1960, P INT S LIN SPAC, P115
[9]  
El-Ganainy R, 2018, NAT PHYS, V14, P11, DOI [10.1038/nphys4323, 10.1038/NPHYS4323]
[10]  
Feinberg Joshua, 2021, Journal of Physics: Conference Series, V2038, DOI 10.1088/1742-6596/2038/1/012009