Noise Estimation for Hyperspectral Imagery using Spectral Unmixing and Synthesis

被引:3
|
作者
Demirkesen, C. [1 ,2 ]
Leloglu, Ugur M. [2 ]
机构
[1] TUBITAK UZAY, Ankara, Turkey
[2] METU, Geodet & Geog Informat Technol, Ankara, Turkey
关键词
Hyperspectral; noise estimation; end-member extraction; ENDMEMBER EXTRACTION ALGORITHM;
D O I
10.1117/12.2067211
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Most hyperspectral image (HSI) processing algorithms assume a signal to noise ratio model in their formulation which makes them dependent on accurate noise estimation. Many techniques have been proposed to estimate the noise. A very comprehensive comparative study on the subject is done by Gao et al. [1]. In a nut-shell, most techniques are based on the idea of calculating standard deviation from assumed-to-be homogenous regions in the image. Some of these algorithms work on a regular grid parameterized with a window size w, while others make use of image segmentation in order to obtain homogenous regions. This study focuses not only to the statistics of the noise but to the estimation of the noise itself. A noise estimation technique motivated from a recent HSI de-noising approach [2] is proposed in this study. The de-noising algorithm is based on estimation of the end-members and their fractional abundances using non-negative least squares method. The end-members are extracted using the well-known simplex volume optimization technique called N-FINDR after manual selection of number of end-members and the image is reconstructed using the estimated end-members and abundances. Actually, image de-noising and noise estimation are two sides of the same coin: Once we de-noise an image, we can estimate the noise by calculating the difference of the de-noised image and the original noisy image. In this study, the noise is estimated as described above. To assess the accuracy of this method, the methodology in [1] is followed, i.e., synthetic images are created by mixing end-member spectra and noise. Since best performing method for noise estimation was spectral and spatial de-correlation (SSDC) originally proposed in [3], the proposed method is compared to SSDC. The results of the experiments conducted with synthetic HSIs suggest that the proposed noise estimation strategy outperforms the existing techniques in terms of mean and standard deviation of absolute error of the estimated noise. Finally, it is shown that the proposed technique demonstrated a robust behavior to the change of its single parameter, namely the number of end-members.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Noise Reduction on Hyperspectral Imagery Using Spectral Unmixing and Class-Labels
    Kaya, Berk
    Ozkan, Savas
    Akar, Gozde Bozdagi
    2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [2] Spectral Unmixing of Hyperspectral Imagery Using Multilayer NMF
    Rajabi, Roozbeh
    Ghassemian, Hassan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (01) : 38 - 42
  • [3] Target detection from noise-reduced hyperspectral imagery using a spectral unmixing approach
    Qian, Shen-En
    Levesque, Josee
    OPTICAL ENGINEERING, 2009, 48 (02)
  • [4] Progressive Band Selection of Spectral Unmixing for Hyperspectral Imagery
    Chang, Chein-I
    Liu, Keng-Hao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (04): : 2002 - 2017
  • [5] Normal Endmember Spectral Unmixing Method for Hyperspectral Imagery
    Zhuang, Lina
    Zhang, Bing
    Gao, Lianru
    Li, Jun
    Plaza, Antonio
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) : 2598 - 2606
  • [6] LINEAR SPECTRAL UNMIXING WITH GENERALIZED CONSTRAINT FOR HYPERSPECTRAL IMAGERY
    Zhang, Yuhang
    Fan, Xiao
    Zhang, Ye
    Wei, Ran
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 4106 - 4109
  • [7] Using Linear Spectral Unmixing for Subpixel Mapping of Hyperspectral Imagery: A Quantitative Assessment
    Xu, Xiong
    Tong, Xiaohua
    Plaza, Antonio
    Zhong, Yanfei
    Xie, Huan
    Zhang, Liangpei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (04) : 1589 - 1600
  • [8] Restoration of hyperspectral image contaminated by Poisson noise using spectral unmixing
    Zou, Changzhong
    Xia, Youshen
    NEUROCOMPUTING, 2018, 275 : 430 - 437
  • [9] Supervised Nonlinear Spectral Unmixing Using a Postnonlinear Mixing Model for Hyperspectral Imagery
    Altmann, Yoann
    Halimi, Abderrahim
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (06) : 3017 - 3025
  • [10] Spectral-spatial constrained sparse unmixing of hyperspectral imagery using a hybrid spectral library
    Xu, Ning
    Xiao, Xinyao
    Geng, Xiurui
    You, Hongjian
    Cao, Yingui
    REMOTE SENSING LETTERS, 2016, 7 (07) : 641 - 650