SWKB and proper quantization conditions for translationally shape-invariant potentials

被引:1
|
作者
Mahdi, Kamal [1 ]
Kasri, Y. [1 ,2 ]
Grandati, Y. [2 ]
Berard, A. [2 ]
机构
[1] Univ Bejaia, Fac Sci Exactes, Lab Phys Theor, Bejaia 06000, Algeria
[2] Univ Lorraine, IF CNRS 2843, ICPMB, Equipe BioPhysStat,Lab LCP A2MC, 1 Bvd DF Arago, F-57078 Metz, France
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2016年 / 131卷 / 08期
关键词
EXACTLY SOLVABLE POTENTIALS; HAMILTON-JACOBI FORMALISM; ORTHOGONAL POLYNOMIALS; QUANTUM-MECHANICS; SCHRODINGER-EQUATION; RATIONAL EXTENSIONS; SUPERSYMMETRY; EXACTNESS; SPECTRA; RULES;
D O I
10.1140/epjp/i2016-16259-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using a recently proposed classification for the primary translationally shape-invariant potentials, we show that the exact quantization rule formulated by Ma and Xu is equivalent to the supersymmetric JWKB quantization condition. The energy levels for the two considered categories of shape-invariant potentials are also derived.
引用
收藏
页数:12
相关论文
共 41 条
  • [1] Exactness of SWKB for shape invariant potentials
    Gangopadhyaya, Asim
    Mallow, Jeffry, V
    Rasinariu, Constantin
    Bougie, Jonathan
    PHYSICS LETTERS A, 2020, 384 (28)
  • [2] Ma-Xu quantization rule and exact JWKB condition for translationally shape invariant potentials
    Grandati, Y.
    Berard, A.
    PHYSICS LETTERS A, 2011, 375 (03) : 390 - 395
  • [3] Solvable rational extension of translationally shape invariant potentials
    Grandati, Yves
    Berard, Alain
    ALGEBRAIC ASPECTS OF DARBOUX TRANSFORMATIONS, QUANTUM INTEGRABLE SYSTEMS AND SUPERSYMMETRIC QUANTUM MECHANICS, 2012, 563 : 115 - 125
  • [4] Extended Krein-Adler theorem for the translationally shape invariant potentials
    Gomez-Ullate, David
    Grandati, Yves
    Milson, Robert
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (04)
  • [5] On the new translational shape-invariant potentials
    Ramos, Arturo
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (34)
  • [6] A unified scheme of central symmetric shape-invariant potentials
    Koohrokhi, T.
    Izadpanah, A.
    Gerayloo, M.
    PRAMANA-JOURNAL OF PHYSICS, 2024, 98 (04):
  • [7] Rational solutions for the Riccati-Schrodinger equations associated to translationally shape invariant potentials
    Grandati, Y.
    Berard, A.
    ANNALS OF PHYSICS, 2010, 325 (06) : 1235 - 1259
  • [8] Unified Supersymmetric Description of Shape-Invariant Potentials within and beyond the Natanzon Class
    Soltesz, Tibor
    Petho, Levente Ferenc
    Levai, Geza
    SYMMETRY-BASEL, 2024, 16 (02):
  • [9] Method for generating additive shape-invariant potentials from an Euler equation
    Bougie, Jonathan
    Gangopadhyaya, Asim
    Mallow, Jeffry V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (27)
  • [10] Exactly Solvable Potentials Derived from SWKB Quantization
    Sun, Hosung
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2014, 35 (03): : 805 - 810