Advanced Matrixes for Binder-Free Nanostructured Electrodes in Lithium-Ion Batteries

被引:161
作者
Zhang, Lihan [1 ,2 ]
Qin, Xianying [1 ]
Zhao, Shiqiang [3 ]
Wang, Aurelia [3 ]
Luo, Jun [4 ]
Wang, Zhong Lin [3 ]
Kang, Feiyu [1 ,2 ]
Lin, Zhiqun [3 ]
Li, Baohua [1 ]
机构
[1] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Engn Lab Next Generat Power & Energy Storage Batt, Shenzhen 518055, Peoples R China
[2] Tsinghua Univ, Sch Mat Sci & Engn, Lab Adv Mat, Beijing 100084, Peoples R China
[3] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[4] Tianjin Univ Technol, Sch Mat Sci & Engn, Inst New Energy Mat & Low Carbon Technol, Ctr Elect Microscopy,TUT FEI Joint Lab, Tianjin 300384, Peoples R China
关键词
electrodes; lithium-ion batteries; matrixes; nanostructures; HIGH-PERFORMANCE ANODE; LONG-CYCLE-LIFE; GEL POLYMER ELECTROLYTE; ULTRATHIN-GRAPHITE FOAM; WALLED CARBON NANOTUBES; GRAPHENE OXIDE SHEETS; HIGH-RATE CAPABILITY; IN-SITU FORMATION; HIGH-CAPACITY; CATHODE MATERIAL;
D O I
10.1002/adma.201908445
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Commercial lithium-ion batteries (LIBs), limited by their insufficient reversible capacity, short cyclability, and high cost, are facing ever-growing requirements for further increases in power capability, energy density, lifespan, and flexibility. The presence of insulating and electrochemically inactive binders in commercial LIB electrodes causes uneven active material distribution and poor contact of these materials with substrates, reducing battery performance. Thus, nanostructured electrodes with binder-free designs are developed and have numerous advantages including large surface area, robust adhesion to substrates, high areal/specific capacity, fast electron/ion transfer, and free space for alleviating volume expansion, leading to superior battery performance. Herein, recent progress on different kinds of supporting matrixes including metals, carbonaceous materials, and polymers as well as other substrates for binder-free nanostructured electrodes in LIBs are summarized systematically. Furthermore, the potential applications of these binder-free nanostructured electrodes in practical full-cell-configuration LIBs, in particular fully flexible/stretchable LIBs, are outlined in detail. Finally, the future opportunities and challenges for such full-cell LIBs based on binder-free nanostructured electrodes are discussed.
引用
收藏
页数:44
相关论文
共 287 条
[1]   A Carbonyl Compound-Based Flexible Cathode with Superior Rate Performance and Cyclic Stability for Flexible Lithium-Ion Batteries [J].
Amin, Kamran ;
Meng, Qinghai ;
Ahmad, Aziz ;
Cheng, Meng ;
Zhang, Miao ;
Mao, Lijuan ;
Lu, Kun ;
Wei, Zhixiang .
ADVANCED MATERIALS, 2018, 30 (04)
[2]   Preparation and electrochemical investigation of LiMn2-xMexO4 (Me:Ni, Fe, and x=0.5, 1) cathode materials for secondary lithium batteries [J].
Amine, K ;
Tukamoto, H ;
Yasuda, H ;
Fujita, Y .
JOURNAL OF POWER SOURCES, 1997, 68 (02) :604-608
[3]   A lithium-oxygen battery with a long cycle life in an air-like atmosphere [J].
Asadi, Mohammad ;
Sayahpour, Baharak ;
Abbasi, Pedram ;
Ngo, Anh T. ;
Karis, Klas ;
Jokisaari, Jacob R. ;
Liu, Cong ;
Narayanan, Badri ;
Gerard, Marc ;
Yasaei, Poya ;
Hu, Xuan ;
Mukherjee, Arijita ;
Lau, Kah Chun ;
Assary, Rajeev S. ;
Khalili-Araghi, Fatemeh ;
Klie, Robert F. ;
Curtiss, Larry A. ;
Salehi-Khojin, Amin .
NATURE, 2018, 555 (7697) :502-+
[4]   In Situ TEM Investigation of ZnO Nanowires during Sodiation and Lithiation Cycling [J].
Asayesh-Ardakani, Hasti ;
Yao, Wentao ;
Yuan, Yifei ;
Nie, Anmin ;
Amine, Khalil ;
Lu, Jun ;
Shahbazian-Yassar, Reza .
SMALL METHODS, 2017, 1 (09)
[5]   All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode [J].
Balogun, Muhammad-Sadeeq ;
Qiu, Weitao ;
Lyu, Feiyi ;
Luo, Yang ;
Meng, Hui ;
Li, Jiantao ;
Mai, Wenjie ;
Mai, Liqiang ;
Tong, Yexiang .
NANO ENERGY, 2016, 26 :446-455
[6]   High power density nitridated hematite (α-Fe2O3) nanorods as anode for high-performance flexible lithium ion batteries [J].
Balogun, Muhammad-Sadeeq ;
Wu, Zupeng ;
Luo, Yang ;
Qiu, Weitao ;
Fan, Xiaolei ;
Long, Bei ;
Huang, Miao ;
Liu, Peng ;
Tong, Yexiang .
JOURNAL OF POWER SOURCES, 2016, 308 :7-17
[7]   Improving the Lithium-Storage Properties of Self-Grown Nickel Oxide: A Back-Up from TiO2 Nanoparticles [J].
Balogun, Muhammad-Sadeeq ;
Qiu, Weitao ;
Luo, Yang ;
Huang, Yongchao ;
Yang, Hao ;
Li, Mingyang ;
Yu, Minghao ;
Liang, Chaolun ;
Fang, Pingping ;
Liu, Peng ;
Tong, Yexiang .
CHEMELECTROCHEM, 2015, 2 (09) :1243-1248
[8]   Nanostructured Fe3O4/SWNT Electrode: Binder-Free and High-Rate Li-Ion Anode [J].
Ban, Chunmei ;
Wu, Zhuangchun ;
Gillaspie, Dane T. ;
Chen, Le ;
Yan, Yanfa ;
Blackburn, Jeffrey L. ;
Dillon, Anne C. .
ADVANCED MATERIALS, 2010, 22 (20) :E145-+
[9]   Eco-friendly process toward collector- and binder-free, high-energy density electrodes for lithium-ion batteries [J].
Bibienne, Thomas ;
Maillaud, Laurent ;
Rousselot, Steeve ;
Taylor, Lauren W. ;
Pasquali, Matteo ;
Dolle, Mickael .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2017, 21 (05) :1407-1416
[10]   Design of Flexible and Self-Standing Electrodes for Li-Ion Batteries [J].
Bourgeois, Jean-Pierre ;
Vlad, Alexandru ;
Melinte, Sorin ;
Gohy, Jean-Francois .
CHINESE JOURNAL OF CHEMISTRY, 2017, 35 (01) :41-47