On the Artificial Neural Networks used for the Forward Problem for the Electrical Impedance Equation

被引:0
作者
Robles, C. M. A. [1 ]
Ponomaryov, V. [1 ]
Ramirez T, M. P. [2 ]
机构
[1] Inst Politecn Nacl, Sch Mech Engn, Postgrad Sect, Mexico City, DF, Mexico
[2] Asaji Audio Int SA CV, Mexico City 16030, DF, Mexico
来源
WORLD CONGRESS ON ENGINEERING AND COMPUTER SCIENCE, WCECS 2015, VOL I | 2015年
关键词
Artificial Neural Network; Backpropagation; Electrical Impedance Equation; Multilayer Perceptron;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
To achieve a recognition of a solution for the forward value problem of the electrical impedance equation, two different artificial neural networks are used and compared: the multilayer perceptron and the backpropagation neural networks.
引用
收藏
页码:86 / 91
页数:6
相关论文
共 50 条
[21]   Nondestructive crack detection in metal structures using impedance responses and artificial neural networks [J].
Ho, Duc-Duy ;
Luu, Tran-Huu-Tin ;
Pham, Minh-Nhan .
STRUCTURAL MONITORING AND MAINTENANCE, AN INTERNATIONAL JOURNAL, 2022, 9 (03) :221-235
[22]   Impedance Based Temperature Estimation of Lithium Ion Cells Using Artificial Neural Networks [J].
Stroebel, Marco ;
Pross-Brakhage, Julia ;
Kopp, Mike ;
Birke, Kai Peter .
BATTERIES-BASEL, 2021, 7 (04)
[23]   Training Feed-Forward Multi-Layer Perceptron Artificial Neural Networks with a Tree-Seed Algorithm [J].
Cinar, Ahmet Cevahir .
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2020, 45 (12) :10915-10938
[24]   Training Feed-Forward Multi-Layer Perceptron Artificial Neural Networks with a Tree-Seed Algorithm [J].
Ahmet Cevahir Cinar .
Arabian Journal for Science and Engineering, 2020, 45 :10915-10938
[25]   Prediction of Electrical and Physical Failure Analysis Success Using Artificial Neural Networks [J].
Zhao, Lin ;
Goh, S. H. ;
Chan, Y. H. ;
Yeoh, B. L. ;
Hu, Hao ;
Thor, M. H. ;
Tan, Alan ;
Lam, Jeffrey .
2018 25TH IEEE INTERNATIONAL SYMPOSIUM ON THE PHYSICAL AND FAILURE ANALYSIS OF INTEGRATED CIRCUITS (IPFA), 2018,
[26]   Extraction of electrical test parameters by artificial neural network [J].
Ke, Joseph Kian Seng ;
Rao, M. V. C. .
INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING-THEORY APPLICATIONS AND PRACTICE, 2006, 13 (01) :71-80
[27]   Locating and Classifying Defects with Artificial Neural Networks [J].
Luna-Aviles, A. ;
Hernandez-Gomez, L. H. ;
Durodola, J. F. ;
Urriolagoitia-Calderon, G. ;
Urriolagoitia-Sosa, G. .
ADVANCES IN EXPERIMENTAL MECHANICS VI, 2008, 13-14 :117-+
[28]   On the Direct Problem of Spectral Reflection Prediction by Artificial Neural Networks: Framework Selection [J].
Milder, Oleg ;
Tarasov, Dmitry ;
Tyagunov, Andrey .
2018 2ND EUROPEAN CONFERENCE ON ELECTRICAL ENGINEERING AND COMPUTER SCIENCE (EECS 2018), 2018, :406-410
[29]   Analysis of international debt problem using artificial neural networks and statistical methods [J].
Yazici, Berna ;
Memmedli, Memmedaga ;
Aslanargun, Atilla ;
Asma, Senay .
NEURAL COMPUTING & APPLICATIONS, 2010, 19 (08) :1207-1216
[30]   Searching for Features with Artificial Neural Networks in Science: The Problem of Non-Uniqueness [J].
Yao, Siyu ;
Hagar, Amit .
INTERNATIONAL STUDIES IN THE PHILOSOPHY OF SCIENCE, 2024, 37 (1-2) :51-67