Inhomogeneous parametric scaling and variable-order fractional diffusion equations

被引:5
|
作者
Roth, Philipp [1 ]
Sokolov, Igor M. [1 ,2 ]
机构
[1] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany
[2] Humboldt Univ, Integrat Res Inst Sci Adlershof, Zum Grossen Windkanal 6, D-12489 Berlin, Germany
关键词
ANOMALOUS DIFFUSION; SUBDIFFUSION; SYSTEM;
D O I
10.1103/PhysRevE.102.012133
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We discuss the derivation and the solutions of integrodifferential equations (variable-order time-fractional diffusion equations) following as continuous limits for lattice continuous time random walk schemes with power-law waiting-time probability density functions whose parameters are position-dependent. We concentrate on subdiffusive cases and discuss two situations as examples: A system consisting of two parts with different exponents of subdiffusion, and a system in which the subdiffusion exponent changes linearly from one end of the interval to another one. In both cases we compare the numerical solutions of generalized master equations describing the process on the lattice to the corresponding solutions of the continuous equations, which follow by exact solution of the corresponding equations in the Laplace domain with subsequent numerical inversion using the Gaver-Stehfest algorithm.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] AN OPTIMAL-ORDER NUMERICAL APPROXIMATION TO VARIABLE-ORDER SPACE-FRACTIONAL DIFFUSION EQUATIONS ON UNIFORM OR GRADED MESHES
    Zheng, Xiangcheng
    Wang, Hong
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (01) : 330 - 352
  • [42] Fast algorithms for high-dimensional variable-order space-time fractional diffusion equations
    Lei Zhang
    Guo-Feng Zhang
    Computational and Applied Mathematics, 2021, 40
  • [43] Qualitative analysis of variable-order fractional differential equations with constant delay
    Naveen, S.
    Parthiban, V.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (04) : 2981 - 2992
  • [44] Accurate Spectral Algorithms for Solving Variable-order Fractional Percolation Equations
    Abdelkawy, M. A.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2020, 15 (02): : 1004 - 1024
  • [45] Genocchi polynomial method for the multiterm variable-order fractional differential equations
    Tural Polat, Sadiye Nergis
    Turan Dincel, Arzu
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2022, 40 (01): : 79 - 84
  • [46] An Optimization Wavelet Method for Multi Variable-order Fractional Differential Equations
    Heydari, M. H.
    Hooshmandasl, M. R.
    Cattani, C.
    Hariharan, G.
    FUNDAMENTA INFORMATICAE, 2017, 151 (1-4) : 255 - 273
  • [47] A finite difference method for elliptic equations with the variable-order fractional derivative
    Shi, Siyuan
    Hao, Zhaopeng
    Du, Rui
    NUMERICAL ALGORITHMS, 2024,
  • [48] On an accurate discretization of a variable-order fractional reaction-diffusion equation
    Hajipour, Mojtaba
    Jajarmi, Amin
    Baleanu, Dumitru
    Sun, HongGuang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 69 : 119 - 133
  • [49] Meshfree methods for the variable-order fractional advection-diffusion equation
    Ju, Yuejuan
    Yang, Jiye
    Liu, Zhiyong
    Xu, Qiuyan
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 211 : 489 - 514
  • [50] Existence and Uniqueness of Weak Solutions to Variable-Order Fractional Laplacian Equations with Variable Exponents
    Guo, Yating
    Ye, Guoju
    JOURNAL OF FUNCTION SPACES, 2021, 2021