Inhomogeneous parametric scaling and variable-order fractional diffusion equations

被引:5
作者
Roth, Philipp [1 ]
Sokolov, Igor M. [1 ,2 ]
机构
[1] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany
[2] Humboldt Univ, Integrat Res Inst Sci Adlershof, Zum Grossen Windkanal 6, D-12489 Berlin, Germany
关键词
ANOMALOUS DIFFUSION; SUBDIFFUSION; SYSTEM;
D O I
10.1103/PhysRevE.102.012133
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We discuss the derivation and the solutions of integrodifferential equations (variable-order time-fractional diffusion equations) following as continuous limits for lattice continuous time random walk schemes with power-law waiting-time probability density functions whose parameters are position-dependent. We concentrate on subdiffusive cases and discuss two situations as examples: A system consisting of two parts with different exponents of subdiffusion, and a system in which the subdiffusion exponent changes linearly from one end of the interval to another one. In both cases we compare the numerical solutions of generalized master equations describing the process on the lattice to the corresponding solutions of the continuous equations, which follow by exact solution of the corresponding equations in the Laplace domain with subsequent numerical inversion using the Gaver-Stehfest algorithm.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] An optimization method based on the generalized polynomials for nonlinear variable-order time fractional diffusion-wave equation
    Dahaghin, M. Sh.
    Hassani, H.
    NONLINEAR DYNAMICS, 2017, 88 (03) : 1587 - 1598
  • [42] An operational matrix method for solving variable-order fractional biharmonic equation
    Heydari, M. H.
    Avazzadeh, Z.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04) : 4397 - 4411
  • [43] Legendre wavelets optimization method for variable-order fractional Poisson equation
    Heydari, Mohammad Hossein
    Avazzadeh, Zakieh
    CHAOS SOLITONS & FRACTALS, 2018, 112 : 180 - 190
  • [44] A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation
    Heydari, Mohammad Hossein
    Avazzadeh, Zakieh
    Haromi, Malih Farzi
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 341 : 215 - 228
  • [45] A variable-order time-fractional derivative model for chloride ions sub-diffusion in concrete structures
    Wen Chen
    Jianjun Zhang
    Jinyang Zhang
    Fractional Calculus and Applied Analysis, 2013, 16 : 76 - 92
  • [46] A variable-order fractional differential equation model of shape memory polymers
    Li, Zheng
    Wang, Hong
    Xiao, Rui
    Yang, Su
    CHAOS SOLITONS & FRACTALS, 2017, 102 : 473 - 485
  • [47] A new Wavelet Method for Variable-Order Fractional Optimal Control Problems
    Heydari, Mohammad Hossein
    Avazzadeh, Zakieh
    ASIAN JOURNAL OF CONTROL, 2018, 20 (05) : 1804 - 1817
  • [48] Variable-order fractional mean square displacement function with evolution of diffusibility
    Yin, Deshun
    Wang, Yixin
    Li, Yanqing
    Cheng, Chen
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (19) : 4571 - 4575
  • [49] Variable-order fractional master equation and clustering of particles: non-uniform lysosome distribution
    Fedotov, Sergei
    Han, Daniel
    Zubarev, Andrey Yu
    Johnston, Mark
    Allan, Victoria J.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2205):
  • [50] Numerical solution of nonlinear delay differential equations of fractional variable-order using a novel shifted Jacobi operational matrix
    Khodabandehlo, H. R.
    Shivanian, E.
    Abbasbandy, S.
    ENGINEERING WITH COMPUTERS, 2022, 38 (SUPPL 3) : 2593 - 2607