Inhomogeneous parametric scaling and variable-order fractional diffusion equations

被引:5
|
作者
Roth, Philipp [1 ]
Sokolov, Igor M. [1 ,2 ]
机构
[1] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany
[2] Humboldt Univ, Integrat Res Inst Sci Adlershof, Zum Grossen Windkanal 6, D-12489 Berlin, Germany
关键词
ANOMALOUS DIFFUSION; SUBDIFFUSION; SYSTEM;
D O I
10.1103/PhysRevE.102.012133
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We discuss the derivation and the solutions of integrodifferential equations (variable-order time-fractional diffusion equations) following as continuous limits for lattice continuous time random walk schemes with power-law waiting-time probability density functions whose parameters are position-dependent. We concentrate on subdiffusive cases and discuss two situations as examples: A system consisting of two parts with different exponents of subdiffusion, and a system in which the subdiffusion exponent changes linearly from one end of the interval to another one. In both cases we compare the numerical solutions of generalized master equations describing the process on the lattice to the corresponding solutions of the continuous equations, which follow by exact solution of the corresponding equations in the Laplace domain with subsequent numerical inversion using the Gaver-Stehfest algorithm.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A robust scheme for Caputo variable-order time-fractional diffusion-type equations
    Sadri, Khadijeh
    Hosseini, Kamyar
    Baleanu, Dumitru
    Salahshour, Soheil
    Hincal, Evren
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 148 (12) : 5747 - 5764
  • [32] Variable-order fractional differential operators in anomalous diffusion modeling
    Sun, HongGuang
    Chen, Wen
    Chen, YangQuan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (21) : 4586 - 4592
  • [33] A review of numerical solutions of variable-order fractional differential equations
    Sun B.
    Zhang W.-C.
    Li Z.-L.
    Fan K.
    Kongzhi yu Juece/Control and Decision, 2022, 37 (10): : 2433 - 2442
  • [34] Inverting the variable fractional order in a variable-order space-fractional diffusion equation with variable diffusivity: Analysis and simulation
    Zheng, Xiangcheng
    Li, Yiqun
    Cheng, Jin
    Wang, Hong
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2021, 29 (02): : 219 - 231
  • [35] An ε-Approximate Approach for Solving Variable-Order Fractional Differential Equations
    Wang, Yahong
    Wang, Wenmin
    Mei, Liangcai
    Lin, Yingzhen
    Sun, Hongbo
    FRACTAL AND FRACTIONAL, 2023, 7 (01)
  • [36] Variable-order fractional Sobolev spaces and nonlinear elliptic equations with variable exponents
    Cheng, Yi
    Ge, Bin
    Agarwal, Ravi P.
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (07)
  • [37] Finite Element Discretizations for Variable-Order Fractional Diffusion Problems
    Lei, Wenyu
    Turkiyyah, George
    Knio, Omar
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 97 (01)
  • [38] Finite Element Discretizations for Variable-Order Fractional Diffusion Problems
    Wenyu Lei
    George Turkiyyah
    Omar Knio
    Journal of Scientific Computing, 2023, 97
  • [39] Fast algorithms for high-dimensional variable-order space-time fractional diffusion equations
    Zhang, Lei
    Zhang, Guo-Feng
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (04):
  • [40] FINITE DIFFERENCE SCHEMES FOR VARIABLE-ORDER TIME FRACTIONAL DIFFUSION EQUATION
    Sun, Hongguang
    Chen, Wen
    Li, Changpin
    Chen, Yangquan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04):