Inhomogeneous parametric scaling and variable-order fractional diffusion equations

被引:5
|
作者
Roth, Philipp [1 ]
Sokolov, Igor M. [1 ,2 ]
机构
[1] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany
[2] Humboldt Univ, Integrat Res Inst Sci Adlershof, Zum Grossen Windkanal 6, D-12489 Berlin, Germany
关键词
ANOMALOUS DIFFUSION; SUBDIFFUSION; SYSTEM;
D O I
10.1103/PhysRevE.102.012133
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We discuss the derivation and the solutions of integrodifferential equations (variable-order time-fractional diffusion equations) following as continuous limits for lattice continuous time random walk schemes with power-law waiting-time probability density functions whose parameters are position-dependent. We concentrate on subdiffusive cases and discuss two situations as examples: A system consisting of two parts with different exponents of subdiffusion, and a system in which the subdiffusion exponent changes linearly from one end of the interval to another one. In both cases we compare the numerical solutions of generalized master equations describing the process on the lattice to the corresponding solutions of the continuous equations, which follow by exact solution of the corresponding equations in the Laplace domain with subsequent numerical inversion using the Gaver-Stehfest algorithm.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] An Adaptive Difference Method for Variable-Order Diffusion Equations
    Quintana-Murillo, Joaquin
    Yuste, Santos Bravo
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (05)
  • [22] Multiplicity results for variable-order fractional Laplacian equations with variable growth
    Xiang, Mingqi
    Zhang, Binlin
    Yang, Di
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 178 : 190 - 204
  • [23] Existence results for variable-order fractional Kirchhoff equations with variable exponents
    Mazan, Hatim
    Masmodi, Mohamed
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024,
  • [24] On the convergence of piecewise polynomial collocation methods for variable-order space-fractional diffusion equations
    Yuan, Wenping
    Liang, Hui
    Chen, Yanping
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 209 : 102 - 117
  • [25] Exponential-sum-approximation technique for variable-order time-fractional diffusion equations
    Jia-Li Zhang
    Zhi-Wei Fang
    Hai-Wei Sun
    Journal of Applied Mathematics and Computing, 2022, 68 : 323 - 347
  • [26] A robust scheme for Caputo variable-order time-fractional diffusion-type equations
    Khadijeh Sadri
    Kamyar Hosseini
    Dumitru Baleanu
    Soheil Salahshour
    Evren Hinçal
    Journal of Thermal Analysis and Calorimetry, 2023, 148 : 5747 - 5764
  • [27] Fractional centered difference schemes and banded preconditioners for nonlinear Riesz space variable-order fractional diffusion equations
    Wang, Qiu-Ya
    She, Zi-Hang
    Lao, Cheng-Xue
    Lin, Fu-Rong
    NUMERICAL ALGORITHMS, 2024, 95 (02) : 859 - 895
  • [28] Fractional centered difference schemes and banded preconditioners for nonlinear Riesz space variable-order fractional diffusion equations
    Qiu-Ya Wang
    Zi-Hang She
    Cheng-Xue Lao
    Fu-Rong Lin
    Numerical Algorithms, 2024, 95 : 859 - 895
  • [29] Exponential-sum-approximation technique for variable-order time-fractional diffusion equations
    Zhang, Jia-Li
    Fang, Zhi-Wei
    Sun, Hai-Wei
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (01) : 323 - 347
  • [30] Fast Second-Order Evaluation for Variable-Order Caputo Fractional Derivative with Applications to Fractional Sub-Diffusion Equations
    Zhang, Jia-Li
    Fang, Zhi-Wei
    Sun, Hai-Wei
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2022, 15 (01): : 200 - 226