Inhomogeneous parametric scaling and variable-order fractional diffusion equations

被引:5
作者
Roth, Philipp [1 ]
Sokolov, Igor M. [1 ,2 ]
机构
[1] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany
[2] Humboldt Univ, Integrat Res Inst Sci Adlershof, Zum Grossen Windkanal 6, D-12489 Berlin, Germany
关键词
ANOMALOUS DIFFUSION; SUBDIFFUSION; SYSTEM;
D O I
10.1103/PhysRevE.102.012133
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We discuss the derivation and the solutions of integrodifferential equations (variable-order time-fractional diffusion equations) following as continuous limits for lattice continuous time random walk schemes with power-law waiting-time probability density functions whose parameters are position-dependent. We concentrate on subdiffusive cases and discuss two situations as examples: A system consisting of two parts with different exponents of subdiffusion, and a system in which the subdiffusion exponent changes linearly from one end of the interval to another one. In both cases we compare the numerical solutions of generalized master equations describing the process on the lattice to the corresponding solutions of the continuous equations, which follow by exact solution of the corresponding equations in the Laplace domain with subsequent numerical inversion using the Gaver-Stehfest algorithm.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] A space-time spectral approximation for solving two dimensional variable-order fractional convection-diffusion equations with nonsmooth solutions
    Amin, A. Z.
    Abdelkawy, M. A.
    Soluma, E. M.
    Babatin, M. M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2024, 35 (07):
  • [22] A novel method to solve variable-order fractional delay differential equations based in lagrange interpolations
    Zuniga-Aguilar, C. J.
    Gomez-Aguilar, J. F.
    Escobar-Jimenez, R. F.
    Romero-Ugalde, H. M.
    CHAOS SOLITONS & FRACTALS, 2019, 126 : 266 - 282
  • [23] A VARIABLE-ORDER FRACTAL DERIVATIVE MODEL FOR ANOMALOUS DIFFUSION
    Liu, Xiaoting
    Sun, Hong-Guang
    Lazarevic, Mihailo P.
    Fu, Zhuojia
    THERMAL SCIENCE, 2017, 21 (01): : 51 - 59
  • [24] The performance of a numerical scheme on the variable-order time-fractional advection-reaction-subdiffusion equations
    Kheirkhah, Farnaz
    Hajipour, Mojtaba
    Baleanu, Dumitru
    APPLIED NUMERICAL MATHEMATICS, 2022, 178 : 25 - 40
  • [25] Optimal-order error estimates of finite element approximations to variable-order time-fractional diffusion equations without regularity assumptions of the true solutions
    Zheng, Xiangcheng
    Wang, Hong
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (02) : 1522 - 1545
  • [26] A Meshless Method for the Variable-Order Time Fractional Telegraph Equation
    Gharian, D.
    Ghaini, F. M. Maalek
    Heydari, M. H.
    JOURNAL OF MATHEMATICAL EXTENSION, 2019, 13 (03) : 35 - 56
  • [27] Stability and convergence of the space fractional variable-order Schrodinger equation
    Atangana, Abdon
    Cloot, Alain H.
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [28] Variable-order fractional MSD function to describe the evolution of protein lateral diffusion ability in cell membranes
    Yin, Deshun
    Qu, Pengfei
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 492 : 707 - 714
  • [29] Analysis of a subdiffusion model with a variable-order fractional calibration term
    Zheng, Xiangcheng
    APPLIED MATHEMATICS LETTERS, 2023, 142
  • [30] A REVIEW ON VARIABLE-ORDER FRACTIONAL DIFFERENTIAL EQUATIONS: MATHEMATICAL FOUNDATIONS, PHYSICAL MODELS, NUMERICAL METHODS AND APPLICATIONS
    Sun, HongGuang
    Chang, Ailian
    Zhang, Yong
    Chen, Wen
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (01) : 27 - 59