Inhomogeneous parametric scaling and variable-order fractional diffusion equations

被引:5
|
作者
Roth, Philipp [1 ]
Sokolov, Igor M. [1 ,2 ]
机构
[1] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany
[2] Humboldt Univ, Integrat Res Inst Sci Adlershof, Zum Grossen Windkanal 6, D-12489 Berlin, Germany
关键词
ANOMALOUS DIFFUSION; SUBDIFFUSION; SYSTEM;
D O I
10.1103/PhysRevE.102.012133
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We discuss the derivation and the solutions of integrodifferential equations (variable-order time-fractional diffusion equations) following as continuous limits for lattice continuous time random walk schemes with power-law waiting-time probability density functions whose parameters are position-dependent. We concentrate on subdiffusive cases and discuss two situations as examples: A system consisting of two parts with different exponents of subdiffusion, and a system in which the subdiffusion exponent changes linearly from one end of the interval to another one. In both cases we compare the numerical solutions of generalized master equations describing the process on the lattice to the corresponding solutions of the continuous equations, which follow by exact solution of the corresponding equations in the Laplace domain with subsequent numerical inversion using the Gaver-Stehfest algorithm.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] The Maximum Principle for Variable-Order Fractional Diffusion Equations and the Estimates of Higher Variable-Order Fractional Derivatives
    Xue, Guangming
    Lin, Funing
    Su, Guangwang
    FRONTIERS IN PHYSICS, 2020, 8
  • [2] Variable-order space-fractional diffusion equations and a variable-order modification of constant-order fractional problems
    Zheng, Xiangcheng
    Wang, Hong
    APPLICABLE ANALYSIS, 2022, 101 (06) : 1848 - 1870
  • [3] Uniqueness of determining the variable fractional order in variable-order time-fractional diffusion equations
    Zheng, Xiangcheng
    Cheng, Jin
    Wang, Hong
    INVERSE PROBLEMS, 2019, 35 (12)
  • [4] A fast method for variable-order space-fractional diffusion equations
    Jia, Jinhong
    Zheng, Xiangcheng
    Fu, Hongfei
    Dai, Pingfei
    Wang, Hong
    NUMERICAL ALGORITHMS, 2020, 85 (04) : 1519 - 1540
  • [5] A fast method for variable-order space-fractional diffusion equations
    Jinhong Jia
    Xiangcheng Zheng
    Hongfei Fu
    Pingfei Dai
    Hong Wang
    Numerical Algorithms, 2020, 85 : 1519 - 1540
  • [6] Wellposedness and regularity of the variable-order time-fractional diffusion equations
    Wang, Hong
    Zheng, Xiangcheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (02) : 1778 - 1802
  • [7] Numerical simulations for fractional variable-order equations
    Mozyrska, Dorota
    Oziablo, Piotr
    IFAC PAPERSONLINE, 2018, 51 (04): : 853 - 858
  • [8] All-at-once method for variable-order time fractional diffusion equations
    Hong-Kui Pang
    Hai-Hua Qin
    Hai-Wei Sun
    Numerical Algorithms, 2022, 90 : 31 - 57
  • [9] All-at-once method for variable-order time fractional diffusion equations
    Pang, Hong-Kui
    Qin, Hai-Hua
    Sun, Hai-Wei
    NUMERICAL ALGORITHMS, 2022, 90 (01) : 31 - 57
  • [10] A numerical method for solving variable-order fractional diffusion equations using fractional-order Taylor wavelets
    Vo Thieu, N.
    Razzaghi, Mohsen
    Toan Phan Thanh
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (03) : 2668 - 2686