A note on the construction of locally D- and DS-optimal designs for the binary logistic model with several explanatory variables

被引:3
作者
Kabera, M. Gaetan [1 ]
Haines, Linda M. [2 ]
Ndlovu, Principal [3 ]
机构
[1] MRC, Biostat Unit, ZA-4067 Durban, South Africa
[2] Univ Cape Town, Dept Stat Sci, ZA-7700 Rondebosch, South Africa
[3] Univ S Africa, Dept Stat, ZA-0001 Pretoria, South Africa
基金
新加坡国家研究基金会; 英国医学研究理事会;
关键词
D-optimality; D-S-optimality; k-variable binary logistic model; Standardized variance function; GENERALIZED LINEAR-MODELS; REGRESSION;
D O I
10.1016/j.spl.2012.01.023
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An explicit formulation of D- and D-S-optimal designs for the binary logistic regression model in several variables, without interaction between the variables, is presented. The proof of the optimality of the designs is "traditional" in the sense that it invokes the Equivalence Theorem, and builds on the earlier work of Sitter and Torsney (1995b) and Torsney and Gunduz (2001) and complements that given by Yang et al. (2011) (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:865 / 870
页数:6
相关论文
共 17 条
[1]  
Atkinson A. C., 2007, Optimum experimental designs, with SAS
[2]  
Atkinson A.C., 1996, HANDB STAT, P437, DOI 10.1016/S0169-7161(96)13016-9
[3]   LOCALLY OPTIMAL DESIGNS FOR ESTIMATING PARAMETERS [J].
CHERNOFF, H .
ANNALS OF MATHEMATICAL STATISTICS, 1953, 24 (04) :586-602
[4]  
Dobson JA, 2008, INTRO GEN LINEAR MOD
[5]   Robust experimental design for multivariate generalized linear models [J].
Dror, Hovav A. ;
Steinberg, David M. .
TECHNOMETRICS, 2006, 48 (04) :520-529
[6]  
FORD I, 1992, J ROY STAT SOC B MET, V54, P569
[7]   D-optimal designs for logistic regression in two variables [J].
Haines, Linda M. ;
Kabera, Gaetan ;
Ndlovu, Principal ;
O'Brien, Timothy E. .
MODA 8 - ADVANCES IN MODEL-ORIENTED DESIGN AND ANALYSIS, 2007, :91-+
[8]  
Jia Y., 2001, Optimal experimental designs for two-variable logistic models
[9]  
Kabera MG, 2009, THESIS U KWAZULU NAT
[10]  
Kiefer J., 1960, CAN J MATH, V12, P363, DOI [10.4153/CJM-1960-030-4, DOI 10.4153/CJM-1960-030-4]