Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models

被引:451
作者
Meehl, Gerald A. [1 ]
Senior, Catherine A. [2 ]
Eyring, Veronika [3 ,4 ]
Flato, Gregory [5 ]
Lamarque, Jean-Francois [1 ]
Stouffer, Ronald J. [6 ]
Taylor, Karl E. [7 ]
Schlund, Manuel [3 ]
机构
[1] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA
[2] Met Off Hadley Ctr, Exeter, Devon, England
[3] Deutsch Zentrum Luft & Raumfahrt DLR, Inst Phys Atmosphare, Oberpfaffenhofen, Germany
[4] Univ Bremen, Inst Environm Phys IUP, Bremen, Germany
[5] Environm & Climate Change Canada, Canadian Ctr Modelling & Anal, Victoria, BC, Canada
[6] Univ Arizona, Tucson, AZ USA
[7] PCMDI, Livermore, CA USA
关键词
OCEAN-ATMOSPHERE MODEL; INCREASING CO2; DEPENDENCE; FEEDBACK; CLOUD;
D O I
10.1126/sciadv.aba1981
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For the current generation of earth system models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6), the range of equilibrium climate sensitivity (ECS, a hypothetical value of global warming at equilibrium for a doubling of CO2) is 1.8 degrees C to 5.6 degrees C, the largest of any generation of models dating to the 1990s. Meanwhile, the range of transient climate response (TCR, the surface temperature warming around the time of CO2 doubling in a 1% per year CO2 increase simulation) for the CMIP6 models of 1.7 degrees C (1.3 degrees C to 3.0 degrees C) is only slightly larger than for the CMIP3 and CMIP5 models. Here we review and synthesize the latest developments in ECS and TCR values in CMIP, compile possible reasons for the current values as supplied by the modeling groups, and highlight future directions. Cloud feedbacks and cloud-aerosol interactions are the most likely contributors to the high values and increased range of ECS in CMIP6.
引用
收藏
页数:10
相关论文
共 73 条
[1]  
Allen SK, 2013, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
[2]   Forcings, Feedbacks, and Climate Sensitivity in HadGEM3-GC3.1 and UKESM1 [J].
Andrews, Timothy ;
Andrews, Martin B. ;
Bodas-Salcedo, Alejandro ;
Jones, Gareth S. ;
Kulhbrodt, Till ;
Manners, James ;
Menary, Matthew B. ;
Ridley, Jeff ;
Ringer, Mark A. ;
Sellar, Alistair A. ;
Senior, Catherine A. ;
Tang, Yongming .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2019, 11 (12) :4377-4394
[3]   The Dependence of Global Cloud and Lapse Rate Feedbacks on the Spatial Structure of Tropical Pacific Warming [J].
Andrews, Timothy ;
Webb, Mark J. .
JOURNAL OF CLIMATE, 2018, 31 (02) :641-654
[4]   The Dependence of Radiative Forcing and Feedback on Evolving Patterns of Surface Temperature Change in Climate Models [J].
Andrews, Timothy ;
Gregory, Jonathan M. ;
Webb, Mark J. .
JOURNAL OF CLIMATE, 2015, 28 (04) :1630-1648
[5]  
[Anonymous], 2019, GEOSCIENTIFIC MODEL, DOI [10.5194/gmd-2019-282, DOI 10.5194/GMD-2019-282]
[6]  
Armour KC, 2017, NAT CLIM CHANGE, V7, P331, DOI [10.1038/nclimate3278, 10.1038/NCLIMATE3278]
[7]   Time-Varying Climate Sensitivity from Regional Feedbacks [J].
Armour, Kyle C. ;
Bitz, Cecilia M. ;
Roe, Gerard H. .
JOURNAL OF CLIMATE, 2013, 26 (13) :4518-4534
[8]   Feedback temperature dependence determines the risk of high warming [J].
Bloch-Johnson, Jonah ;
Pierrehumbert, Raymond T. ;
Abbot, Dorian S. .
GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (12) :4973-4980
[9]   Strong Dependence of Atmospheric Feedbacks on Mixed-Phase Microphysics and Aerosol-Cloud Interactions in HadGEM3 [J].
Bodas-Salcedo, A. ;
Mulcahy, J. P. ;
Andrews, T. ;
Williams, K. D. ;
Ringer, M. A. ;
Field, P. R. ;
Elsaesser, G. S. .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2019, 11 (06) :1735-1758
[10]  
Bretherton FP, 1990, CLIMATE CHANGE: THE IPCC SCIENTIFIC ASSESSMENT, P173