LeoPARD - A Generic Platform for the Implementation of Higher-Order Reasoners

被引:9
|
作者
Wisniewski, Max [1 ]
Steen, Alexander [1 ]
Benzmueller, Christoph [1 ]
机构
[1] Free Univ Berlin, Dept Math & Comp Sci, Berlin, Germany
来源
INTELLIGENT COMPUTER MATHEMATICS, CICM 2015 | 2015年 / 9150卷
关键词
D O I
10.1007/978-3-319-20615-8_22
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
LeoPARD supports the implementation of knowledge representation and reasoning tools for higher-order logic(s). It combines a sophisticated data structure layer (polymorphically typed.-calculus with nameless spine notation, explicit substitutions, and perfect term sharing) with an ambitious multi-agent blackboard architecture (supporting prover parallelism at the term, clause, and search level). Further features of LeoPARD include a parser for all TPTP dialects, a command line interpreter, and generic means for the integration of external reasoners.
引用
收藏
页码:325 / 330
页数:6
相关论文
共 50 条
  • [21] CALCULATION OF HIGHER-ORDER SENSITIVITIES AND HIGHER-ORDER SENSITIVITY INVARIANTS
    GEHER, K
    SOLYMOSI, J
    PERIODICA POLYTECHNICA-ELECTRICAL ENGINEERING, 1972, 16 (03): : 325 - 330
  • [22] Higher-order symmetric duality with higher-order generalized invexity
    Padhan S.K.
    Nahak C.
    Journal of Applied Mathematics and Computing, 2015, 48 (1-2) : 407 - 420
  • [23] HIGHER-ORDER OPTIMALITY CONDITIONS AND HIGHER-ORDER TANGENT SETS
    Penot, Jean-Paul
    SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (04) : 2508 - 2527
  • [24] Typed higher-order narrowing without higher-order strategies
    Antoy, S
    Tolmach, A
    FUNCTIONAL AND LOGIC PROGRAMMING, PROCEEDINGS, 1999, 1722 : 335 - 352
  • [25] Nuprl-Light: An implementation framework for higher-order logics
    Hickey, JJ
    AUTOMATED DEDUCTION - CADE-14, 1997, 1249 : 395 - 399
  • [26] Correlation Power Analysis and Higher-Order Masking Implementation of WAGE
    Fei, Yunsi
    Gong, Guang
    Gongye, Cheng
    Mandal, Kalikinkar
    Rohit, Raghvendra
    Xu, Tianhong
    Yi, Yunjie
    Zidaric, Nusa
    SELECTED AREAS IN CRYPTOGRAPHY, 2021, 12804 : 593 - 614
  • [27] Implementation of higher-order absorbing boundary conditions for the Einstein equations
    Rinne, Oliver
    Buchman, Luisa T.
    Scheel, Mark A.
    Pfeiffer, Harald P.
    CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (07)
  • [28] Implementation of Higher-Order CPML on the HIE-FDTD Methods
    Pandey, Ankit Kumar
    Saxena, Alok Kumar
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2023, 65 (06) : 1839 - 1847
  • [29] Implementation of higher-order methods for robust and efficient compositional simulation
    Mikyska, Jiri
    Firoozabadi, Abbas
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (08) : 2898 - 2913
  • [30] Parallel Implementation and Application of the Higher-order FDTD with Convolution PML
    Liu, Yawen
    Yao, Yongping
    Li, Yan
    Yu, Guangheng
    Ni, Jiazheng
    2016 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO), 2016,