LeoPARD - A Generic Platform for the Implementation of Higher-Order Reasoners

被引:9
|
作者
Wisniewski, Max [1 ]
Steen, Alexander [1 ]
Benzmueller, Christoph [1 ]
机构
[1] Free Univ Berlin, Dept Math & Comp Sci, Berlin, Germany
来源
INTELLIGENT COMPUTER MATHEMATICS, CICM 2015 | 2015年 / 9150卷
关键词
D O I
10.1007/978-3-319-20615-8_22
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
LeoPARD supports the implementation of knowledge representation and reasoning tools for higher-order logic(s). It combines a sophisticated data structure layer (polymorphically typed.-calculus with nameless spine notation, explicit substitutions, and perfect term sharing) with an ambitious multi-agent blackboard architecture (supporting prover parallelism at the term, clause, and search level). Further features of LeoPARD include a parser for all TPTP dialects, a command line interpreter, and generic means for the integration of external reasoners.
引用
收藏
页码:325 / 330
页数:6
相关论文
共 50 条
  • [1] There Is No Best β-Normalization Strategy for Higher-Order Reasoners
    Steen, Alexander
    Benzmueller, Christoph
    LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING, (LPAR-20 2015), 2015, 9450 : 329 - 339
  • [2] A HIGHER-ORDER IMPLEMENTATION OF REWRITING
    PAULSON, L
    SCIENCE OF COMPUTER PROGRAMMING, 1983, 3 (02) : 119 - 149
  • [3] A generic type system for higher-order Ψ-calculi
    Huttel, Hans
    Lybech, Stian
    Bendixen, Alex R.
    Bojesen, Bjarke B.
    INFORMATION AND COMPUTATION, 2024, 300
  • [4] A Generic Type System for Higher-Order ?-calculi
    Bendixen, Alex Ronning
    Bojesen, Bjarke Bredow
    Huttel, Hans
    Lybech, Stian
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2022, (368): : 43 - 59
  • [5] Foundations for the implementation of higher-order subtyping
    Crary, K
    ACM SIGPLAN NOTICES, 1997, 32 (08) : 125 - 135
  • [6] Extended and Generic Higher-Order Elements for MEMS Modeling
    Biolek, Zdenek
    Biolkova, Viera
    Biolek, Dalibor
    Kolka, Zdenek
    SENSORS, 2022, 22 (20)
  • [7] On generic context lemmas for higher-order calculi with sharing
    Schmidt-Schauss, Manfred
    Sabel, David
    THEORETICAL COMPUTER SCIENCE, 2010, 411 (11-13) : 1521 - 1541
  • [8] A Generic Table Recomputation-Based Higher-Order Masking
    Tang, Ming
    Qiu, Zhenlong
    Guo, Zhipeng
    Mu, Yi
    Huang, Xinyi
    Danger, Jean-Luc
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2017, 36 (11) : 1779 - 1789
  • [9] Charrelation and Charm: Generic Statistics Incorporating Higher-Order Information
    Slapak, Alon
    Yeredor, Arie
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (10) : 5089 - 5106
  • [10] Higher-Order Intentionality and Higher-Order Acquaintance
    Benj Hellie
    Philosophical Studies, 2007, 134 : 289 - 324