Cobalt-doped ZnO nanowires on quartz: Synthesis by simple chemical method and characterization

被引:30
作者
Vempati, Sesha [1 ]
Shetty, Amitha [2 ]
Dawson, P. [1 ]
Nanda, Karunakar [2 ]
Krupanidhi, S. B. [2 ]
机构
[1] Queens Univ Belfast, Sch Math & Phys, Ctr Nanostruct Media, Belfast BT7 1NN, Antrim, North Ireland
[2] Indian Inst Sci, Mat Res Ctr, Bangalore 560012, Karnataka, India
基金
英国工程与自然科学研究理事会;
关键词
Defects; Doping; Nanostructures; Nanomaterials; Zinc compounds; Semiconducting II-VI materials; ROOM-TEMPERATURE FERROMAGNETISM; THIN-FILMS; RAMAN-SPECTROSCOPY; NANOCRYSTALS; NANOPARTICLES; LUMINESCENCE; DEPENDENCE; GROWTH; EDGE;
D O I
10.1016/j.jcrysgro.2012.01.015
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The synthesis of cobalt-doped ZnO nanowires is achieved using a simple, metal salt decomposition growth technique. A sequence of drop casting on a quartz substrate held at 100 degrees C and annealing results in the growth of nanowires of average (modal) length similar to 200 nm and diameter of 15 +/- 4 nm and consequently an aspect ratio of similar to 13. A variation in the synthesis process, where the solution of mixed salts is deposited on the substrate at 25 degrees C, yields a grainy film structure which constitutes a useful comparator case. X-ray diffraction shows a preferred [0001] growth direction for the nanowires while a small unit cell volume contraction for Co-doped samples and data from Raman spectroscopy indicate incorporation of the Co dopant into the lattice; neither technique shows explicit evidence of cobalt oxides. Also the nanowire samples display excellent optical transmission across the entire visible range, as well as strong photoluminescence (exciton emission) in the near UV, centered at 3.25 eV. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:7 / 12
页数:6
相关论文
共 39 条
[11]   A simple recycling and reuse hydrothermal route to ZnO nanorod arrays, nanoribbon bundles, nanosheets, nanocubes and nanoparticles [J].
Gao, Peng ;
Chen, Yujin ;
Wang, Ying ;
Zhang, Qin ;
Li, Xuefei ;
Hu, Min .
CHEMICAL COMMUNICATIONS, 2009, (19) :2762-2764
[12]   Low-temperature wafer-scale production of ZnO nanowire arrays [J].
Greene, LE ;
Law, M ;
Goldberger, J ;
Kim, F ;
Johnson, JC ;
Zhang, YF ;
Saykally, RJ ;
Yang, PD .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (26) :3031-3034
[13]   Effect of Co doping on the structural, optical and magnetic properties of ZnO nanoparticles [J].
Hays, J. ;
Reddy, K. M. ;
Graces, N. Y. ;
Engelhard, M. H. ;
Shutthanandan, V. ;
Luo, M. ;
Xu, C. ;
Giles, N. C. ;
Wang, C. ;
Thevuthasan, S. ;
Punnoose, A. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (26)
[14]   Zinc oxide nanoparticles with defects [J].
Ischenko, V ;
Polarz, S ;
Grote, D ;
Stavarache, V ;
Fink, K ;
Driess, M .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (12) :1945-1954
[15]   Structure and magnetism of cobalt-doped ZnO thin films [J].
Ivill, M. ;
Pearton, S. J. ;
Rawal, S. ;
Leu, L. ;
Sadik, P. ;
Das, R. ;
Hebard, A. F. ;
Chisholm, M. ;
Budai, J. D. ;
Norton, D. P. .
NEW JOURNAL OF PHYSICS, 2008, 10
[16]   Photocurrent in ZnO nanowires grown from Au electrodes [J].
Keem, K ;
Kim, H ;
Kim, GT ;
Lee, JS ;
Min, B ;
Cho, K ;
Sung, MY ;
Kim, S .
APPLIED PHYSICS LETTERS, 2004, 84 (22) :4376-4378
[17]   Monodispersed ZnO nanoparticles from a single molecular precursor [J].
Kim, CG ;
Sung, KW ;
Chung, TM ;
Jung, DY ;
Kim, Y .
CHEMICAL COMMUNICATIONS, 2003, (16) :2068-2069
[18]   Spectroscopic ellipsometry study of optical transitions in Zn1-xCoxO alloys [J].
Kim, KJ ;
Park, YR .
APPLIED PHYSICS LETTERS, 2002, 81 (08) :1420-1422
[19]   Electronic structure origins of polarity-dependent high-TC ferromagnetismin oxide-diluted magnetic semiconductors [J].
Kittilstved, KR ;
Liu, WK ;
Gamelin, DR .
NATURE MATERIALS, 2006, 5 (04) :291-297
[20]   Fabrication of ZnO nanorods and nanotubes in aqueous solutions [J].
Li, QC ;
Kumar, V ;
Li, Y ;
Zhang, HT ;
Marks, TJ ;
Chang, RPH .
CHEMISTRY OF MATERIALS, 2005, 17 (05) :1001-1006