Hand Orientation Regression Using Random Forest for Augmented Reality

被引:5
|
作者
Asad, Muhammad [1 ]
Slabaugh, Greg [1 ]
机构
[1] City Univ London, London EC1V 0HB, England
来源
AUGMENTED AND VIRTUAL REALITY, AVR 2014 | 2014年 / 8853卷
关键词
Orientation estimation; Random forest regression; Silhouette image; Hand; POSE ESTIMATION;
D O I
10.1007/978-3-319-13969-2_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a regression method for the estimation of hand orientation using an uncalibrated camera. For training the system, we use a depth camera to capture a large dataset of hand color images and orientation angles. Each color image is segmented producing a silhouette image from which contour distance features are extracted. The orientation angles are captured by robustly fitting a plane to the depth image of the hand, providing a surface normal encoding the hand orientation in 3D space. We then train multiple Random Forest regressors to learn the non-linear mapping from the space of silhouette images to orientation angles. For online testing of the system, we only require a standard 2D image to infer the 3D hand orientation. Experimental results show the approach is computationally efficient, does not require any camera calibration, and is robust to inter-person shape variation.
引用
收藏
页码:159 / 174
页数:16
相关论文
共 50 条
  • [1] Orientation System Using Augmented Reality for Universities
    Ortiz-Martinez, Elkin -Faber
    Benavides-Zuniga, David -Armando
    Amador-Donado, Siler
    Marceles-Villalba, Katerine
    Camacho-Ojeda, Marta -Cecilia
    REVISTA FACULTAD DE INGENIERIA, UNIVERSIDAD PEDAGOGICA Y TECNOLOGICA DE COLOMBIA, 2023, 32 (64):
  • [2] HAND GESTURE RECOGNITION USING A SKELETON-BASED FEATURE REPRESENTATION WITH A RANDOM REGRESSION FOREST
    Canavan, Shaun
    Keyes, Walter
    Mccormick, Ryan
    Kunnumpurath, Julie
    Hoelzel, Tanner
    Yin, Lijun
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 2364 - 2368
  • [3] Using Hand Gesture and Speech in a Multimodal Augmented Reality Environment
    Dias, Miguel Sales
    Bastos, Rafael
    Fernandes, Joao
    Tavares, Joao
    Santos, Pedro
    GESTURE-BASED HUMAN-COMPUTER INTERACTION AND SIMULATION, 2009, 5085 : 175 - +
  • [4] Simulation System for Myoelectric Hand Prosthesis Using Augmented Reality
    He, Yunan
    Fukuda, Osamu
    Ide, Shunsuke
    Okumura, Hiroshi
    Yamaguchi, Nobuhiko
    Bu, Nan
    2017 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (IEEE ROBIO 2017), 2017, : 1424 - 1429
  • [6] Planar Markerless Augmented Reality Using Online Orientation Estimation
    Kobayashi, Tatsuya
    Kato, Haruhisa
    Sugano, Masaru
    COMPUTER VISION - ACCV 2016, PT IV, 2017, 10114 : 424 - 439
  • [7] 3D Pose Estimation of a Front-Pointing Hand Using a Random Regression Forest
    Fujita, Dai
    Komuro, Takashi
    COMPUTER VISION - ACCV 2016 WORKSHOPS, PT III, 2017, 10118 : 197 - 211
  • [8] Hand segmentation for augmented reality system
    Yueming, Wu
    Hanwu, He
    Tong, Ru
    Detao, Zheng
    SECOND WORKSHOP ON DIGITAL MEDIA AND ITS APPLICATION IN MUSEUM & HERITAGE, PROCEEDINGS, 2007, : 395 - 400
  • [9] The Supernumerary Hand Illusion in Augmented Reality
    Rosa, Nina
    Veltkamp, Remco C.
    Hurst, Wolfgang
    Nijboer, Tanja
    Gilbers, Carolien
    Werkhoven, Peter
    ACM TRANSACTIONS ON APPLIED PERCEPTION, 2019, 16 (02)
  • [10] Mobile hand tracking using FPGAs for low powered augmented reality
    Piekarski, W
    Smith, R
    Wigley, G
    Thomas, B
    Kearney, D
    EIGHTH INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS, PROCEEDINGS, 2004, : 190 - 191