SHIFT A Synthetic Driving Dataset for Continuous Multi-Task Domain Adaptation

被引:67
作者
Sun, Tao [1 ]
Segu, Mattia [1 ]
Postels, Janis [1 ]
Wang, Yuxuan [1 ]
Van Gool, Luc [1 ]
Schiele, Bernt [2 ]
Tombari, Federico [3 ,4 ]
Yu, Fisher [1 ]
机构
[1] Swiss Fed Inst Technol, Zurich, Switzerland
[2] MPI Informat, Saarbrucken, Germany
[3] Google, Mountain View, CA 94043 USA
[4] Tech Univ Munich, Munich, Germany
来源
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022) | 2022年
关键词
VISION;
D O I
10.1109/CVPR52688.2022.02068
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Adapting to a continuously evolving environment is a safety-critical challenge inevitably faced by all autonomous-driving systems. Existing image- and video-based driving datasets, however, fall short of capturing the mutable nature of the real world. In this paper, we introduce the largest multi-task synthetic dataset for autonomous driving, SHIFT. It presents discrete and continuous shifts in cloudiness, rain and fog intensity, time of day, and vehicle and pedestrian density. Featuring a comprehensive sensor suite and annotations for several mainstream perception tasks, SHIFT allows to investigate how a perception systems' performance degrades at increasing levels of domain shift, fostering the development of continuous adaptation strategies to mitigate this problem and assessing the robustness and generality of a model. Our dataset and benchmark toolkit are publicly availableat www.vis.xyz/shift.
引用
收藏
页码:21339 / 21350
页数:12
相关论文
共 95 条
[21]  
Hendrycks D., 2017, P INT C LEARN REPR, P1, DOI [10.48550/arXiv.1610.02136, DOI 10.48550/ARXIV.1610.02136]
[22]  
Hendrycks D, 2019, ICLR
[23]  
Hendrycks Dan, 2019, ARXIV190312261
[24]  
Hendrycks Dan, 2020, computer vision
[25]  
Hoffman J, 2018, PR MACH LEARN RES, V80
[26]  
Hu Hou-Ning, 2021, ARXIV210307351
[27]  
Jin Jiongchao, 2021, ARXIV210404606
[28]  
Joseph RK, 2016, CRIT POL ECON S ASIA, P1
[29]  
Kesten R., 2019, Lyft level 5 av dataset 2019
[30]  
Khosla A, 2012, LECT NOTES COMPUT SC, V7572, P158, DOI 10.1007/978-3-642-33718-5_12