SHIFT A Synthetic Driving Dataset for Continuous Multi-Task Domain Adaptation

被引:66
作者
Sun, Tao [1 ]
Segu, Mattia [1 ]
Postels, Janis [1 ]
Wang, Yuxuan [1 ]
Van Gool, Luc [1 ]
Schiele, Bernt [2 ]
Tombari, Federico [3 ,4 ]
Yu, Fisher [1 ]
机构
[1] Swiss Fed Inst Technol, Zurich, Switzerland
[2] MPI Informat, Saarbrucken, Germany
[3] Google, Mountain View, CA 94043 USA
[4] Tech Univ Munich, Munich, Germany
来源
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022) | 2022年
关键词
VISION;
D O I
10.1109/CVPR52688.2022.02068
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Adapting to a continuously evolving environment is a safety-critical challenge inevitably faced by all autonomous-driving systems. Existing image- and video-based driving datasets, however, fall short of capturing the mutable nature of the real world. In this paper, we introduce the largest multi-task synthetic dataset for autonomous driving, SHIFT. It presents discrete and continuous shifts in cloudiness, rain and fog intensity, time of day, and vehicle and pedestrian density. Featuring a comprehensive sensor suite and annotations for several mainstream perception tasks, SHIFT allows to investigate how a perception systems' performance degrades at increasing levels of domain shift, fostering the development of continuous adaptation strategies to mitigate this problem and assessing the robustness and generality of a model. Our dataset and benchmark toolkit are publicly availableat www.vis.xyz/shift.
引用
收藏
页码:21339 / 21350
页数:12
相关论文
共 95 条
[1]  
[Anonymous], IEEE INT CONF ROBOT
[2]  
[Anonymous], 2017, INT C MACH LEARN, DOI DOI 10.1109/DSC.2017.89
[3]   A theory of learning from different domains [J].
Ben-David, Shai ;
Blitzer, John ;
Crammer, Koby ;
Kulesza, Alex ;
Pereira, Fernando ;
Vaughan, Jennifer Wortman .
MACHINE LEARNING, 2010, 79 (1-2) :151-175
[4]   AdaBins: Depth Estimation Using Adaptive Bins [J].
Bhat, Shariq Farooq ;
Alhashim, Ibraheem ;
Wonka, Peter .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :4008-4017
[5]   Semantic object classes in video: A high-definition ground truth database [J].
Brostow, Gabriel J. ;
Fauqueur, Julien ;
Cipolla, Roberto .
PATTERN RECOGNITION LETTERS, 2009, 30 (02) :88-97
[6]  
Caesar H, 2020, PROC CVPR IEEE, P11618, DOI 10.1109/CVPR42600.2020.01164
[7]   Argoverse: 3D Tracking and Forecasting with Rich Maps [J].
Chang, Ming-Fang ;
Lambert, John ;
Sangkloy, Patsorn ;
Singh, Jagjeet ;
Bak, Slawomir ;
Hartnett, Andrew ;
Wang, De ;
Carr, Peter ;
Lucey, Simon ;
Ramanan, Deva ;
Hays, James .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :8740-8749
[8]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[9]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[10]  
Dai DX, 2018, IEEE INT C INTELL TR, P3819, DOI 10.1109/ITSC.2018.8569387